This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for eupth2 (induction step): The only vertices of odd degree in a graph with an Eulerian path are the endpoints, and then only if the endpoints are distinct, if the Eulerian path shortened by one edge has this property. Formerly part of proof for eupth2 . (Contributed by Mario Carneiro, 8-Apr-2015) (Revised by AV, 26-Feb-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eupth2.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| eupth2.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | ||
| eupth2.g | ⊢ ( 𝜑 → 𝐺 ∈ UPGraph ) | ||
| eupth2.f | ⊢ ( 𝜑 → Fun 𝐼 ) | ||
| eupth2.p | ⊢ ( 𝜑 → 𝐹 ( EulerPaths ‘ 𝐺 ) 𝑃 ) | ||
| Assertion | eupth2lems | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑛 ≤ ( ♯ ‘ 𝐹 ) → { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑛 ) ) ) 〉 ) ‘ 𝑥 ) } = if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 𝑛 ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 𝑛 ) } ) ) → ( ( 𝑛 + 1 ) ≤ ( ♯ ‘ 𝐹 ) → { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ ( 𝑛 + 1 ) ) ) ) 〉 ) ‘ 𝑥 ) } = if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( 𝑛 + 1 ) ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ ( 𝑛 + 1 ) ) } ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eupth2.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | eupth2.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | |
| 3 | eupth2.g | ⊢ ( 𝜑 → 𝐺 ∈ UPGraph ) | |
| 4 | eupth2.f | ⊢ ( 𝜑 → Fun 𝐼 ) | |
| 5 | eupth2.p | ⊢ ( 𝜑 → 𝐹 ( EulerPaths ‘ 𝐺 ) 𝑃 ) | |
| 6 | nn0re | ⊢ ( 𝑛 ∈ ℕ0 → 𝑛 ∈ ℝ ) | |
| 7 | 6 | adantl | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → 𝑛 ∈ ℝ ) |
| 8 | 7 | lep1d | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → 𝑛 ≤ ( 𝑛 + 1 ) ) |
| 9 | peano2re | ⊢ ( 𝑛 ∈ ℝ → ( 𝑛 + 1 ) ∈ ℝ ) | |
| 10 | 7 9 | syl | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( 𝑛 + 1 ) ∈ ℝ ) |
| 11 | eupthiswlk | ⊢ ( 𝐹 ( EulerPaths ‘ 𝐺 ) 𝑃 → 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) | |
| 12 | wlkcl | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) | |
| 13 | 5 11 12 | 3syl | ⊢ ( 𝜑 → ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) |
| 14 | 13 | nn0red | ⊢ ( 𝜑 → ( ♯ ‘ 𝐹 ) ∈ ℝ ) |
| 15 | 14 | adantr | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( ♯ ‘ 𝐹 ) ∈ ℝ ) |
| 16 | letr | ⊢ ( ( 𝑛 ∈ ℝ ∧ ( 𝑛 + 1 ) ∈ ℝ ∧ ( ♯ ‘ 𝐹 ) ∈ ℝ ) → ( ( 𝑛 ≤ ( 𝑛 + 1 ) ∧ ( 𝑛 + 1 ) ≤ ( ♯ ‘ 𝐹 ) ) → 𝑛 ≤ ( ♯ ‘ 𝐹 ) ) ) | |
| 17 | 7 10 15 16 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑛 ≤ ( 𝑛 + 1 ) ∧ ( 𝑛 + 1 ) ≤ ( ♯ ‘ 𝐹 ) ) → 𝑛 ≤ ( ♯ ‘ 𝐹 ) ) ) |
| 18 | 8 17 | mpand | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑛 + 1 ) ≤ ( ♯ ‘ 𝐹 ) → 𝑛 ≤ ( ♯ ‘ 𝐹 ) ) ) |
| 19 | 18 | imim1d | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑛 ≤ ( ♯ ‘ 𝐹 ) → { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑛 ) ) ) 〉 ) ‘ 𝑥 ) } = if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 𝑛 ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 𝑛 ) } ) ) → ( ( 𝑛 + 1 ) ≤ ( ♯ ‘ 𝐹 ) → { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑛 ) ) ) 〉 ) ‘ 𝑥 ) } = if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 𝑛 ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 𝑛 ) } ) ) ) ) |
| 20 | fveq2 | ⊢ ( 𝑥 = 𝑦 → ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ ( 𝑛 + 1 ) ) ) ) 〉 ) ‘ 𝑥 ) = ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ ( 𝑛 + 1 ) ) ) ) 〉 ) ‘ 𝑦 ) ) | |
| 21 | 20 | breq2d | ⊢ ( 𝑥 = 𝑦 → ( 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ ( 𝑛 + 1 ) ) ) ) 〉 ) ‘ 𝑥 ) ↔ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ ( 𝑛 + 1 ) ) ) ) 〉 ) ‘ 𝑦 ) ) ) |
| 22 | 21 | notbid | ⊢ ( 𝑥 = 𝑦 → ( ¬ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ ( 𝑛 + 1 ) ) ) ) 〉 ) ‘ 𝑥 ) ↔ ¬ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ ( 𝑛 + 1 ) ) ) ) 〉 ) ‘ 𝑦 ) ) ) |
| 23 | 22 | elrab | ⊢ ( 𝑦 ∈ { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ ( 𝑛 + 1 ) ) ) ) 〉 ) ‘ 𝑥 ) } ↔ ( 𝑦 ∈ 𝑉 ∧ ¬ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ ( 𝑛 + 1 ) ) ) ) 〉 ) ‘ 𝑦 ) ) ) |
| 24 | 3 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( ( 𝑛 + 1 ) ≤ ( ♯ ‘ 𝐹 ) ∧ { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑛 ) ) ) 〉 ) ‘ 𝑥 ) } = if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 𝑛 ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 𝑛 ) } ) ) ) ∧ 𝑦 ∈ 𝑉 ) → 𝐺 ∈ UPGraph ) |
| 25 | 4 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( ( 𝑛 + 1 ) ≤ ( ♯ ‘ 𝐹 ) ∧ { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑛 ) ) ) 〉 ) ‘ 𝑥 ) } = if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 𝑛 ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 𝑛 ) } ) ) ) ∧ 𝑦 ∈ 𝑉 ) → Fun 𝐼 ) |
| 26 | 5 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( ( 𝑛 + 1 ) ≤ ( ♯ ‘ 𝐹 ) ∧ { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑛 ) ) ) 〉 ) ‘ 𝑥 ) } = if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 𝑛 ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 𝑛 ) } ) ) ) ∧ 𝑦 ∈ 𝑉 ) → 𝐹 ( EulerPaths ‘ 𝐺 ) 𝑃 ) |
| 27 | eqid | ⊢ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑛 ) ) ) 〉 = 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑛 ) ) ) 〉 | |
| 28 | eqid | ⊢ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ ( 𝑛 + 1 ) ) ) ) 〉 = 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ ( 𝑛 + 1 ) ) ) ) 〉 | |
| 29 | simpr | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → 𝑛 ∈ ℕ0 ) | |
| 30 | 29 | ad2antrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( ( 𝑛 + 1 ) ≤ ( ♯ ‘ 𝐹 ) ∧ { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑛 ) ) ) 〉 ) ‘ 𝑥 ) } = if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 𝑛 ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 𝑛 ) } ) ) ) ∧ 𝑦 ∈ 𝑉 ) → 𝑛 ∈ ℕ0 ) |
| 31 | simprl | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( ( 𝑛 + 1 ) ≤ ( ♯ ‘ 𝐹 ) ∧ { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑛 ) ) ) 〉 ) ‘ 𝑥 ) } = if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 𝑛 ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 𝑛 ) } ) ) ) → ( 𝑛 + 1 ) ≤ ( ♯ ‘ 𝐹 ) ) | |
| 32 | 31 | adantr | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( ( 𝑛 + 1 ) ≤ ( ♯ ‘ 𝐹 ) ∧ { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑛 ) ) ) 〉 ) ‘ 𝑥 ) } = if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 𝑛 ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 𝑛 ) } ) ) ) ∧ 𝑦 ∈ 𝑉 ) → ( 𝑛 + 1 ) ≤ ( ♯ ‘ 𝐹 ) ) |
| 33 | simpr | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( ( 𝑛 + 1 ) ≤ ( ♯ ‘ 𝐹 ) ∧ { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑛 ) ) ) 〉 ) ‘ 𝑥 ) } = if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 𝑛 ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 𝑛 ) } ) ) ) ∧ 𝑦 ∈ 𝑉 ) → 𝑦 ∈ 𝑉 ) | |
| 34 | simplrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( ( 𝑛 + 1 ) ≤ ( ♯ ‘ 𝐹 ) ∧ { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑛 ) ) ) 〉 ) ‘ 𝑥 ) } = if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 𝑛 ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 𝑛 ) } ) ) ) ∧ 𝑦 ∈ 𝑉 ) → { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑛 ) ) ) 〉 ) ‘ 𝑥 ) } = if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 𝑛 ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 𝑛 ) } ) ) | |
| 35 | 1 2 24 25 26 27 28 30 32 33 34 | eupth2lem3 | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( ( 𝑛 + 1 ) ≤ ( ♯ ‘ 𝐹 ) ∧ { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑛 ) ) ) 〉 ) ‘ 𝑥 ) } = if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 𝑛 ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 𝑛 ) } ) ) ) ∧ 𝑦 ∈ 𝑉 ) → ( ¬ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ ( 𝑛 + 1 ) ) ) ) 〉 ) ‘ 𝑦 ) ↔ 𝑦 ∈ if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( 𝑛 + 1 ) ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ ( 𝑛 + 1 ) ) } ) ) ) |
| 36 | 35 | pm5.32da | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( ( 𝑛 + 1 ) ≤ ( ♯ ‘ 𝐹 ) ∧ { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑛 ) ) ) 〉 ) ‘ 𝑥 ) } = if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 𝑛 ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 𝑛 ) } ) ) ) → ( ( 𝑦 ∈ 𝑉 ∧ ¬ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ ( 𝑛 + 1 ) ) ) ) 〉 ) ‘ 𝑦 ) ) ↔ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ∈ if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( 𝑛 + 1 ) ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ ( 𝑛 + 1 ) ) } ) ) ) ) |
| 37 | 0elpw | ⊢ ∅ ∈ 𝒫 𝑉 | |
| 38 | 1 | wlkepvtx | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ( ( 𝑃 ‘ 0 ) ∈ 𝑉 ∧ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∈ 𝑉 ) ) |
| 39 | 38 | simpld | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ( 𝑃 ‘ 0 ) ∈ 𝑉 ) |
| 40 | 5 11 39 | 3syl | ⊢ ( 𝜑 → ( 𝑃 ‘ 0 ) ∈ 𝑉 ) |
| 41 | 40 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( ( 𝑛 + 1 ) ≤ ( ♯ ‘ 𝐹 ) ∧ { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑛 ) ) ) 〉 ) ‘ 𝑥 ) } = if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 𝑛 ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 𝑛 ) } ) ) ) → ( 𝑃 ‘ 0 ) ∈ 𝑉 ) |
| 42 | 1 | wlkp | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) |
| 43 | 5 11 42 | 3syl | ⊢ ( 𝜑 → 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) |
| 44 | 43 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( ( 𝑛 + 1 ) ≤ ( ♯ ‘ 𝐹 ) ∧ { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑛 ) ) ) 〉 ) ‘ 𝑥 ) } = if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 𝑛 ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 𝑛 ) } ) ) ) → 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) |
| 45 | peano2nn0 | ⊢ ( 𝑛 ∈ ℕ0 → ( 𝑛 + 1 ) ∈ ℕ0 ) | |
| 46 | 45 | adantl | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( 𝑛 + 1 ) ∈ ℕ0 ) |
| 47 | 46 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( ( 𝑛 + 1 ) ≤ ( ♯ ‘ 𝐹 ) ∧ { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑛 ) ) ) 〉 ) ‘ 𝑥 ) } = if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 𝑛 ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 𝑛 ) } ) ) ) → ( 𝑛 + 1 ) ∈ ℕ0 ) |
| 48 | nn0uz | ⊢ ℕ0 = ( ℤ≥ ‘ 0 ) | |
| 49 | 47 48 | eleqtrdi | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( ( 𝑛 + 1 ) ≤ ( ♯ ‘ 𝐹 ) ∧ { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑛 ) ) ) 〉 ) ‘ 𝑥 ) } = if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 𝑛 ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 𝑛 ) } ) ) ) → ( 𝑛 + 1 ) ∈ ( ℤ≥ ‘ 0 ) ) |
| 50 | 13 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( ( 𝑛 + 1 ) ≤ ( ♯ ‘ 𝐹 ) ∧ { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑛 ) ) ) 〉 ) ‘ 𝑥 ) } = if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 𝑛 ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 𝑛 ) } ) ) ) → ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) |
| 51 | 50 | nn0zd | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( ( 𝑛 + 1 ) ≤ ( ♯ ‘ 𝐹 ) ∧ { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑛 ) ) ) 〉 ) ‘ 𝑥 ) } = if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 𝑛 ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 𝑛 ) } ) ) ) → ( ♯ ‘ 𝐹 ) ∈ ℤ ) |
| 52 | elfz5 | ⊢ ( ( ( 𝑛 + 1 ) ∈ ( ℤ≥ ‘ 0 ) ∧ ( ♯ ‘ 𝐹 ) ∈ ℤ ) → ( ( 𝑛 + 1 ) ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ↔ ( 𝑛 + 1 ) ≤ ( ♯ ‘ 𝐹 ) ) ) | |
| 53 | 49 51 52 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( ( 𝑛 + 1 ) ≤ ( ♯ ‘ 𝐹 ) ∧ { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑛 ) ) ) 〉 ) ‘ 𝑥 ) } = if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 𝑛 ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 𝑛 ) } ) ) ) → ( ( 𝑛 + 1 ) ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ↔ ( 𝑛 + 1 ) ≤ ( ♯ ‘ 𝐹 ) ) ) |
| 54 | 31 53 | mpbird | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( ( 𝑛 + 1 ) ≤ ( ♯ ‘ 𝐹 ) ∧ { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑛 ) ) ) 〉 ) ‘ 𝑥 ) } = if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 𝑛 ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 𝑛 ) } ) ) ) → ( 𝑛 + 1 ) ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) |
| 55 | 44 54 | ffvelcdmd | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( ( 𝑛 + 1 ) ≤ ( ♯ ‘ 𝐹 ) ∧ { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑛 ) ) ) 〉 ) ‘ 𝑥 ) } = if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 𝑛 ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 𝑛 ) } ) ) ) → ( 𝑃 ‘ ( 𝑛 + 1 ) ) ∈ 𝑉 ) |
| 56 | 41 55 | prssd | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( ( 𝑛 + 1 ) ≤ ( ♯ ‘ 𝐹 ) ∧ { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑛 ) ) ) 〉 ) ‘ 𝑥 ) } = if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 𝑛 ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 𝑛 ) } ) ) ) → { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ ( 𝑛 + 1 ) ) } ⊆ 𝑉 ) |
| 57 | prex | ⊢ { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ ( 𝑛 + 1 ) ) } ∈ V | |
| 58 | 57 | elpw | ⊢ ( { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ ( 𝑛 + 1 ) ) } ∈ 𝒫 𝑉 ↔ { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ ( 𝑛 + 1 ) ) } ⊆ 𝑉 ) |
| 59 | 56 58 | sylibr | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( ( 𝑛 + 1 ) ≤ ( ♯ ‘ 𝐹 ) ∧ { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑛 ) ) ) 〉 ) ‘ 𝑥 ) } = if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 𝑛 ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 𝑛 ) } ) ) ) → { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ ( 𝑛 + 1 ) ) } ∈ 𝒫 𝑉 ) |
| 60 | ifcl | ⊢ ( ( ∅ ∈ 𝒫 𝑉 ∧ { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ ( 𝑛 + 1 ) ) } ∈ 𝒫 𝑉 ) → if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( 𝑛 + 1 ) ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ ( 𝑛 + 1 ) ) } ) ∈ 𝒫 𝑉 ) | |
| 61 | 37 59 60 | sylancr | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( ( 𝑛 + 1 ) ≤ ( ♯ ‘ 𝐹 ) ∧ { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑛 ) ) ) 〉 ) ‘ 𝑥 ) } = if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 𝑛 ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 𝑛 ) } ) ) ) → if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( 𝑛 + 1 ) ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ ( 𝑛 + 1 ) ) } ) ∈ 𝒫 𝑉 ) |
| 62 | 61 | elpwid | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( ( 𝑛 + 1 ) ≤ ( ♯ ‘ 𝐹 ) ∧ { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑛 ) ) ) 〉 ) ‘ 𝑥 ) } = if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 𝑛 ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 𝑛 ) } ) ) ) → if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( 𝑛 + 1 ) ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ ( 𝑛 + 1 ) ) } ) ⊆ 𝑉 ) |
| 63 | 62 | sseld | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( ( 𝑛 + 1 ) ≤ ( ♯ ‘ 𝐹 ) ∧ { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑛 ) ) ) 〉 ) ‘ 𝑥 ) } = if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 𝑛 ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 𝑛 ) } ) ) ) → ( 𝑦 ∈ if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( 𝑛 + 1 ) ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ ( 𝑛 + 1 ) ) } ) → 𝑦 ∈ 𝑉 ) ) |
| 64 | 63 | pm4.71rd | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( ( 𝑛 + 1 ) ≤ ( ♯ ‘ 𝐹 ) ∧ { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑛 ) ) ) 〉 ) ‘ 𝑥 ) } = if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 𝑛 ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 𝑛 ) } ) ) ) → ( 𝑦 ∈ if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( 𝑛 + 1 ) ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ ( 𝑛 + 1 ) ) } ) ↔ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ∈ if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( 𝑛 + 1 ) ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ ( 𝑛 + 1 ) ) } ) ) ) ) |
| 65 | 36 64 | bitr4d | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( ( 𝑛 + 1 ) ≤ ( ♯ ‘ 𝐹 ) ∧ { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑛 ) ) ) 〉 ) ‘ 𝑥 ) } = if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 𝑛 ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 𝑛 ) } ) ) ) → ( ( 𝑦 ∈ 𝑉 ∧ ¬ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ ( 𝑛 + 1 ) ) ) ) 〉 ) ‘ 𝑦 ) ) ↔ 𝑦 ∈ if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( 𝑛 + 1 ) ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ ( 𝑛 + 1 ) ) } ) ) ) |
| 66 | 23 65 | bitrid | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( ( 𝑛 + 1 ) ≤ ( ♯ ‘ 𝐹 ) ∧ { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑛 ) ) ) 〉 ) ‘ 𝑥 ) } = if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 𝑛 ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 𝑛 ) } ) ) ) → ( 𝑦 ∈ { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ ( 𝑛 + 1 ) ) ) ) 〉 ) ‘ 𝑥 ) } ↔ 𝑦 ∈ if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( 𝑛 + 1 ) ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ ( 𝑛 + 1 ) ) } ) ) ) |
| 67 | 66 | eqrdv | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( ( 𝑛 + 1 ) ≤ ( ♯ ‘ 𝐹 ) ∧ { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑛 ) ) ) 〉 ) ‘ 𝑥 ) } = if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 𝑛 ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 𝑛 ) } ) ) ) → { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ ( 𝑛 + 1 ) ) ) ) 〉 ) ‘ 𝑥 ) } = if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( 𝑛 + 1 ) ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ ( 𝑛 + 1 ) ) } ) ) |
| 68 | 67 | exp32 | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑛 + 1 ) ≤ ( ♯ ‘ 𝐹 ) → ( { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑛 ) ) ) 〉 ) ‘ 𝑥 ) } = if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 𝑛 ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 𝑛 ) } ) → { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ ( 𝑛 + 1 ) ) ) ) 〉 ) ‘ 𝑥 ) } = if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( 𝑛 + 1 ) ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ ( 𝑛 + 1 ) ) } ) ) ) ) |
| 69 | 68 | a2d | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( ( ( 𝑛 + 1 ) ≤ ( ♯ ‘ 𝐹 ) → { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑛 ) ) ) 〉 ) ‘ 𝑥 ) } = if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 𝑛 ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 𝑛 ) } ) ) → ( ( 𝑛 + 1 ) ≤ ( ♯ ‘ 𝐹 ) → { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ ( 𝑛 + 1 ) ) ) ) 〉 ) ‘ 𝑥 ) } = if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( 𝑛 + 1 ) ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ ( 𝑛 + 1 ) ) } ) ) ) ) |
| 70 | 19 69 | syld | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑛 ≤ ( ♯ ‘ 𝐹 ) → { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑛 ) ) ) 〉 ) ‘ 𝑥 ) } = if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 𝑛 ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 𝑛 ) } ) ) → ( ( 𝑛 + 1 ) ≤ ( ♯ ‘ 𝐹 ) → { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ ( 𝑛 + 1 ) ) ) ) 〉 ) ‘ 𝑥 ) } = if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( 𝑛 + 1 ) ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ ( 𝑛 + 1 ) ) } ) ) ) ) |