This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for eupth2 (induction step): The only vertices of odd degree in a graph with an Eulerian path are the endpoints, and then only if the endpoints are distinct, if the Eulerian path shortened by one edge has this property. Formerly part of proof for eupth2 . (Contributed by Mario Carneiro, 8-Apr-2015) (Revised by AV, 26-Feb-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eupth2.v | |- V = ( Vtx ` G ) |
|
| eupth2.i | |- I = ( iEdg ` G ) |
||
| eupth2.g | |- ( ph -> G e. UPGraph ) |
||
| eupth2.f | |- ( ph -> Fun I ) |
||
| eupth2.p | |- ( ph -> F ( EulerPaths ` G ) P ) |
||
| Assertion | eupth2lems | |- ( ( ph /\ n e. NN0 ) -> ( ( n <_ ( # ` F ) -> { x e. V | -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ n ) ) ) >. ) ` x ) } = if ( ( P ` 0 ) = ( P ` n ) , (/) , { ( P ` 0 ) , ( P ` n ) } ) ) -> ( ( n + 1 ) <_ ( # ` F ) -> { x e. V | -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ ( n + 1 ) ) ) ) >. ) ` x ) } = if ( ( P ` 0 ) = ( P ` ( n + 1 ) ) , (/) , { ( P ` 0 ) , ( P ` ( n + 1 ) ) } ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eupth2.v | |- V = ( Vtx ` G ) |
|
| 2 | eupth2.i | |- I = ( iEdg ` G ) |
|
| 3 | eupth2.g | |- ( ph -> G e. UPGraph ) |
|
| 4 | eupth2.f | |- ( ph -> Fun I ) |
|
| 5 | eupth2.p | |- ( ph -> F ( EulerPaths ` G ) P ) |
|
| 6 | nn0re | |- ( n e. NN0 -> n e. RR ) |
|
| 7 | 6 | adantl | |- ( ( ph /\ n e. NN0 ) -> n e. RR ) |
| 8 | 7 | lep1d | |- ( ( ph /\ n e. NN0 ) -> n <_ ( n + 1 ) ) |
| 9 | peano2re | |- ( n e. RR -> ( n + 1 ) e. RR ) |
|
| 10 | 7 9 | syl | |- ( ( ph /\ n e. NN0 ) -> ( n + 1 ) e. RR ) |
| 11 | eupthiswlk | |- ( F ( EulerPaths ` G ) P -> F ( Walks ` G ) P ) |
|
| 12 | wlkcl | |- ( F ( Walks ` G ) P -> ( # ` F ) e. NN0 ) |
|
| 13 | 5 11 12 | 3syl | |- ( ph -> ( # ` F ) e. NN0 ) |
| 14 | 13 | nn0red | |- ( ph -> ( # ` F ) e. RR ) |
| 15 | 14 | adantr | |- ( ( ph /\ n e. NN0 ) -> ( # ` F ) e. RR ) |
| 16 | letr | |- ( ( n e. RR /\ ( n + 1 ) e. RR /\ ( # ` F ) e. RR ) -> ( ( n <_ ( n + 1 ) /\ ( n + 1 ) <_ ( # ` F ) ) -> n <_ ( # ` F ) ) ) |
|
| 17 | 7 10 15 16 | syl3anc | |- ( ( ph /\ n e. NN0 ) -> ( ( n <_ ( n + 1 ) /\ ( n + 1 ) <_ ( # ` F ) ) -> n <_ ( # ` F ) ) ) |
| 18 | 8 17 | mpand | |- ( ( ph /\ n e. NN0 ) -> ( ( n + 1 ) <_ ( # ` F ) -> n <_ ( # ` F ) ) ) |
| 19 | 18 | imim1d | |- ( ( ph /\ n e. NN0 ) -> ( ( n <_ ( # ` F ) -> { x e. V | -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ n ) ) ) >. ) ` x ) } = if ( ( P ` 0 ) = ( P ` n ) , (/) , { ( P ` 0 ) , ( P ` n ) } ) ) -> ( ( n + 1 ) <_ ( # ` F ) -> { x e. V | -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ n ) ) ) >. ) ` x ) } = if ( ( P ` 0 ) = ( P ` n ) , (/) , { ( P ` 0 ) , ( P ` n ) } ) ) ) ) |
| 20 | fveq2 | |- ( x = y -> ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ ( n + 1 ) ) ) ) >. ) ` x ) = ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ ( n + 1 ) ) ) ) >. ) ` y ) ) |
|
| 21 | 20 | breq2d | |- ( x = y -> ( 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ ( n + 1 ) ) ) ) >. ) ` x ) <-> 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ ( n + 1 ) ) ) ) >. ) ` y ) ) ) |
| 22 | 21 | notbid | |- ( x = y -> ( -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ ( n + 1 ) ) ) ) >. ) ` x ) <-> -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ ( n + 1 ) ) ) ) >. ) ` y ) ) ) |
| 23 | 22 | elrab | |- ( y e. { x e. V | -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ ( n + 1 ) ) ) ) >. ) ` x ) } <-> ( y e. V /\ -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ ( n + 1 ) ) ) ) >. ) ` y ) ) ) |
| 24 | 3 | ad3antrrr | |- ( ( ( ( ph /\ n e. NN0 ) /\ ( ( n + 1 ) <_ ( # ` F ) /\ { x e. V | -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ n ) ) ) >. ) ` x ) } = if ( ( P ` 0 ) = ( P ` n ) , (/) , { ( P ` 0 ) , ( P ` n ) } ) ) ) /\ y e. V ) -> G e. UPGraph ) |
| 25 | 4 | ad3antrrr | |- ( ( ( ( ph /\ n e. NN0 ) /\ ( ( n + 1 ) <_ ( # ` F ) /\ { x e. V | -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ n ) ) ) >. ) ` x ) } = if ( ( P ` 0 ) = ( P ` n ) , (/) , { ( P ` 0 ) , ( P ` n ) } ) ) ) /\ y e. V ) -> Fun I ) |
| 26 | 5 | ad3antrrr | |- ( ( ( ( ph /\ n e. NN0 ) /\ ( ( n + 1 ) <_ ( # ` F ) /\ { x e. V | -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ n ) ) ) >. ) ` x ) } = if ( ( P ` 0 ) = ( P ` n ) , (/) , { ( P ` 0 ) , ( P ` n ) } ) ) ) /\ y e. V ) -> F ( EulerPaths ` G ) P ) |
| 27 | eqid | |- <. V , ( I |` ( F " ( 0 ..^ n ) ) ) >. = <. V , ( I |` ( F " ( 0 ..^ n ) ) ) >. |
|
| 28 | eqid | |- <. V , ( I |` ( F " ( 0 ..^ ( n + 1 ) ) ) ) >. = <. V , ( I |` ( F " ( 0 ..^ ( n + 1 ) ) ) ) >. |
|
| 29 | simpr | |- ( ( ph /\ n e. NN0 ) -> n e. NN0 ) |
|
| 30 | 29 | ad2antrr | |- ( ( ( ( ph /\ n e. NN0 ) /\ ( ( n + 1 ) <_ ( # ` F ) /\ { x e. V | -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ n ) ) ) >. ) ` x ) } = if ( ( P ` 0 ) = ( P ` n ) , (/) , { ( P ` 0 ) , ( P ` n ) } ) ) ) /\ y e. V ) -> n e. NN0 ) |
| 31 | simprl | |- ( ( ( ph /\ n e. NN0 ) /\ ( ( n + 1 ) <_ ( # ` F ) /\ { x e. V | -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ n ) ) ) >. ) ` x ) } = if ( ( P ` 0 ) = ( P ` n ) , (/) , { ( P ` 0 ) , ( P ` n ) } ) ) ) -> ( n + 1 ) <_ ( # ` F ) ) |
|
| 32 | 31 | adantr | |- ( ( ( ( ph /\ n e. NN0 ) /\ ( ( n + 1 ) <_ ( # ` F ) /\ { x e. V | -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ n ) ) ) >. ) ` x ) } = if ( ( P ` 0 ) = ( P ` n ) , (/) , { ( P ` 0 ) , ( P ` n ) } ) ) ) /\ y e. V ) -> ( n + 1 ) <_ ( # ` F ) ) |
| 33 | simpr | |- ( ( ( ( ph /\ n e. NN0 ) /\ ( ( n + 1 ) <_ ( # ` F ) /\ { x e. V | -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ n ) ) ) >. ) ` x ) } = if ( ( P ` 0 ) = ( P ` n ) , (/) , { ( P ` 0 ) , ( P ` n ) } ) ) ) /\ y e. V ) -> y e. V ) |
|
| 34 | simplrr | |- ( ( ( ( ph /\ n e. NN0 ) /\ ( ( n + 1 ) <_ ( # ` F ) /\ { x e. V | -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ n ) ) ) >. ) ` x ) } = if ( ( P ` 0 ) = ( P ` n ) , (/) , { ( P ` 0 ) , ( P ` n ) } ) ) ) /\ y e. V ) -> { x e. V | -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ n ) ) ) >. ) ` x ) } = if ( ( P ` 0 ) = ( P ` n ) , (/) , { ( P ` 0 ) , ( P ` n ) } ) ) |
|
| 35 | 1 2 24 25 26 27 28 30 32 33 34 | eupth2lem3 | |- ( ( ( ( ph /\ n e. NN0 ) /\ ( ( n + 1 ) <_ ( # ` F ) /\ { x e. V | -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ n ) ) ) >. ) ` x ) } = if ( ( P ` 0 ) = ( P ` n ) , (/) , { ( P ` 0 ) , ( P ` n ) } ) ) ) /\ y e. V ) -> ( -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ ( n + 1 ) ) ) ) >. ) ` y ) <-> y e. if ( ( P ` 0 ) = ( P ` ( n + 1 ) ) , (/) , { ( P ` 0 ) , ( P ` ( n + 1 ) ) } ) ) ) |
| 36 | 35 | pm5.32da | |- ( ( ( ph /\ n e. NN0 ) /\ ( ( n + 1 ) <_ ( # ` F ) /\ { x e. V | -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ n ) ) ) >. ) ` x ) } = if ( ( P ` 0 ) = ( P ` n ) , (/) , { ( P ` 0 ) , ( P ` n ) } ) ) ) -> ( ( y e. V /\ -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ ( n + 1 ) ) ) ) >. ) ` y ) ) <-> ( y e. V /\ y e. if ( ( P ` 0 ) = ( P ` ( n + 1 ) ) , (/) , { ( P ` 0 ) , ( P ` ( n + 1 ) ) } ) ) ) ) |
| 37 | 0elpw | |- (/) e. ~P V |
|
| 38 | 1 | wlkepvtx | |- ( F ( Walks ` G ) P -> ( ( P ` 0 ) e. V /\ ( P ` ( # ` F ) ) e. V ) ) |
| 39 | 38 | simpld | |- ( F ( Walks ` G ) P -> ( P ` 0 ) e. V ) |
| 40 | 5 11 39 | 3syl | |- ( ph -> ( P ` 0 ) e. V ) |
| 41 | 40 | ad2antrr | |- ( ( ( ph /\ n e. NN0 ) /\ ( ( n + 1 ) <_ ( # ` F ) /\ { x e. V | -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ n ) ) ) >. ) ` x ) } = if ( ( P ` 0 ) = ( P ` n ) , (/) , { ( P ` 0 ) , ( P ` n ) } ) ) ) -> ( P ` 0 ) e. V ) |
| 42 | 1 | wlkp | |- ( F ( Walks ` G ) P -> P : ( 0 ... ( # ` F ) ) --> V ) |
| 43 | 5 11 42 | 3syl | |- ( ph -> P : ( 0 ... ( # ` F ) ) --> V ) |
| 44 | 43 | ad2antrr | |- ( ( ( ph /\ n e. NN0 ) /\ ( ( n + 1 ) <_ ( # ` F ) /\ { x e. V | -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ n ) ) ) >. ) ` x ) } = if ( ( P ` 0 ) = ( P ` n ) , (/) , { ( P ` 0 ) , ( P ` n ) } ) ) ) -> P : ( 0 ... ( # ` F ) ) --> V ) |
| 45 | peano2nn0 | |- ( n e. NN0 -> ( n + 1 ) e. NN0 ) |
|
| 46 | 45 | adantl | |- ( ( ph /\ n e. NN0 ) -> ( n + 1 ) e. NN0 ) |
| 47 | 46 | adantr | |- ( ( ( ph /\ n e. NN0 ) /\ ( ( n + 1 ) <_ ( # ` F ) /\ { x e. V | -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ n ) ) ) >. ) ` x ) } = if ( ( P ` 0 ) = ( P ` n ) , (/) , { ( P ` 0 ) , ( P ` n ) } ) ) ) -> ( n + 1 ) e. NN0 ) |
| 48 | nn0uz | |- NN0 = ( ZZ>= ` 0 ) |
|
| 49 | 47 48 | eleqtrdi | |- ( ( ( ph /\ n e. NN0 ) /\ ( ( n + 1 ) <_ ( # ` F ) /\ { x e. V | -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ n ) ) ) >. ) ` x ) } = if ( ( P ` 0 ) = ( P ` n ) , (/) , { ( P ` 0 ) , ( P ` n ) } ) ) ) -> ( n + 1 ) e. ( ZZ>= ` 0 ) ) |
| 50 | 13 | ad2antrr | |- ( ( ( ph /\ n e. NN0 ) /\ ( ( n + 1 ) <_ ( # ` F ) /\ { x e. V | -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ n ) ) ) >. ) ` x ) } = if ( ( P ` 0 ) = ( P ` n ) , (/) , { ( P ` 0 ) , ( P ` n ) } ) ) ) -> ( # ` F ) e. NN0 ) |
| 51 | 50 | nn0zd | |- ( ( ( ph /\ n e. NN0 ) /\ ( ( n + 1 ) <_ ( # ` F ) /\ { x e. V | -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ n ) ) ) >. ) ` x ) } = if ( ( P ` 0 ) = ( P ` n ) , (/) , { ( P ` 0 ) , ( P ` n ) } ) ) ) -> ( # ` F ) e. ZZ ) |
| 52 | elfz5 | |- ( ( ( n + 1 ) e. ( ZZ>= ` 0 ) /\ ( # ` F ) e. ZZ ) -> ( ( n + 1 ) e. ( 0 ... ( # ` F ) ) <-> ( n + 1 ) <_ ( # ` F ) ) ) |
|
| 53 | 49 51 52 | syl2anc | |- ( ( ( ph /\ n e. NN0 ) /\ ( ( n + 1 ) <_ ( # ` F ) /\ { x e. V | -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ n ) ) ) >. ) ` x ) } = if ( ( P ` 0 ) = ( P ` n ) , (/) , { ( P ` 0 ) , ( P ` n ) } ) ) ) -> ( ( n + 1 ) e. ( 0 ... ( # ` F ) ) <-> ( n + 1 ) <_ ( # ` F ) ) ) |
| 54 | 31 53 | mpbird | |- ( ( ( ph /\ n e. NN0 ) /\ ( ( n + 1 ) <_ ( # ` F ) /\ { x e. V | -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ n ) ) ) >. ) ` x ) } = if ( ( P ` 0 ) = ( P ` n ) , (/) , { ( P ` 0 ) , ( P ` n ) } ) ) ) -> ( n + 1 ) e. ( 0 ... ( # ` F ) ) ) |
| 55 | 44 54 | ffvelcdmd | |- ( ( ( ph /\ n e. NN0 ) /\ ( ( n + 1 ) <_ ( # ` F ) /\ { x e. V | -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ n ) ) ) >. ) ` x ) } = if ( ( P ` 0 ) = ( P ` n ) , (/) , { ( P ` 0 ) , ( P ` n ) } ) ) ) -> ( P ` ( n + 1 ) ) e. V ) |
| 56 | 41 55 | prssd | |- ( ( ( ph /\ n e. NN0 ) /\ ( ( n + 1 ) <_ ( # ` F ) /\ { x e. V | -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ n ) ) ) >. ) ` x ) } = if ( ( P ` 0 ) = ( P ` n ) , (/) , { ( P ` 0 ) , ( P ` n ) } ) ) ) -> { ( P ` 0 ) , ( P ` ( n + 1 ) ) } C_ V ) |
| 57 | prex | |- { ( P ` 0 ) , ( P ` ( n + 1 ) ) } e. _V |
|
| 58 | 57 | elpw | |- ( { ( P ` 0 ) , ( P ` ( n + 1 ) ) } e. ~P V <-> { ( P ` 0 ) , ( P ` ( n + 1 ) ) } C_ V ) |
| 59 | 56 58 | sylibr | |- ( ( ( ph /\ n e. NN0 ) /\ ( ( n + 1 ) <_ ( # ` F ) /\ { x e. V | -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ n ) ) ) >. ) ` x ) } = if ( ( P ` 0 ) = ( P ` n ) , (/) , { ( P ` 0 ) , ( P ` n ) } ) ) ) -> { ( P ` 0 ) , ( P ` ( n + 1 ) ) } e. ~P V ) |
| 60 | ifcl | |- ( ( (/) e. ~P V /\ { ( P ` 0 ) , ( P ` ( n + 1 ) ) } e. ~P V ) -> if ( ( P ` 0 ) = ( P ` ( n + 1 ) ) , (/) , { ( P ` 0 ) , ( P ` ( n + 1 ) ) } ) e. ~P V ) |
|
| 61 | 37 59 60 | sylancr | |- ( ( ( ph /\ n e. NN0 ) /\ ( ( n + 1 ) <_ ( # ` F ) /\ { x e. V | -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ n ) ) ) >. ) ` x ) } = if ( ( P ` 0 ) = ( P ` n ) , (/) , { ( P ` 0 ) , ( P ` n ) } ) ) ) -> if ( ( P ` 0 ) = ( P ` ( n + 1 ) ) , (/) , { ( P ` 0 ) , ( P ` ( n + 1 ) ) } ) e. ~P V ) |
| 62 | 61 | elpwid | |- ( ( ( ph /\ n e. NN0 ) /\ ( ( n + 1 ) <_ ( # ` F ) /\ { x e. V | -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ n ) ) ) >. ) ` x ) } = if ( ( P ` 0 ) = ( P ` n ) , (/) , { ( P ` 0 ) , ( P ` n ) } ) ) ) -> if ( ( P ` 0 ) = ( P ` ( n + 1 ) ) , (/) , { ( P ` 0 ) , ( P ` ( n + 1 ) ) } ) C_ V ) |
| 63 | 62 | sseld | |- ( ( ( ph /\ n e. NN0 ) /\ ( ( n + 1 ) <_ ( # ` F ) /\ { x e. V | -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ n ) ) ) >. ) ` x ) } = if ( ( P ` 0 ) = ( P ` n ) , (/) , { ( P ` 0 ) , ( P ` n ) } ) ) ) -> ( y e. if ( ( P ` 0 ) = ( P ` ( n + 1 ) ) , (/) , { ( P ` 0 ) , ( P ` ( n + 1 ) ) } ) -> y e. V ) ) |
| 64 | 63 | pm4.71rd | |- ( ( ( ph /\ n e. NN0 ) /\ ( ( n + 1 ) <_ ( # ` F ) /\ { x e. V | -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ n ) ) ) >. ) ` x ) } = if ( ( P ` 0 ) = ( P ` n ) , (/) , { ( P ` 0 ) , ( P ` n ) } ) ) ) -> ( y e. if ( ( P ` 0 ) = ( P ` ( n + 1 ) ) , (/) , { ( P ` 0 ) , ( P ` ( n + 1 ) ) } ) <-> ( y e. V /\ y e. if ( ( P ` 0 ) = ( P ` ( n + 1 ) ) , (/) , { ( P ` 0 ) , ( P ` ( n + 1 ) ) } ) ) ) ) |
| 65 | 36 64 | bitr4d | |- ( ( ( ph /\ n e. NN0 ) /\ ( ( n + 1 ) <_ ( # ` F ) /\ { x e. V | -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ n ) ) ) >. ) ` x ) } = if ( ( P ` 0 ) = ( P ` n ) , (/) , { ( P ` 0 ) , ( P ` n ) } ) ) ) -> ( ( y e. V /\ -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ ( n + 1 ) ) ) ) >. ) ` y ) ) <-> y e. if ( ( P ` 0 ) = ( P ` ( n + 1 ) ) , (/) , { ( P ` 0 ) , ( P ` ( n + 1 ) ) } ) ) ) |
| 66 | 23 65 | bitrid | |- ( ( ( ph /\ n e. NN0 ) /\ ( ( n + 1 ) <_ ( # ` F ) /\ { x e. V | -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ n ) ) ) >. ) ` x ) } = if ( ( P ` 0 ) = ( P ` n ) , (/) , { ( P ` 0 ) , ( P ` n ) } ) ) ) -> ( y e. { x e. V | -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ ( n + 1 ) ) ) ) >. ) ` x ) } <-> y e. if ( ( P ` 0 ) = ( P ` ( n + 1 ) ) , (/) , { ( P ` 0 ) , ( P ` ( n + 1 ) ) } ) ) ) |
| 67 | 66 | eqrdv | |- ( ( ( ph /\ n e. NN0 ) /\ ( ( n + 1 ) <_ ( # ` F ) /\ { x e. V | -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ n ) ) ) >. ) ` x ) } = if ( ( P ` 0 ) = ( P ` n ) , (/) , { ( P ` 0 ) , ( P ` n ) } ) ) ) -> { x e. V | -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ ( n + 1 ) ) ) ) >. ) ` x ) } = if ( ( P ` 0 ) = ( P ` ( n + 1 ) ) , (/) , { ( P ` 0 ) , ( P ` ( n + 1 ) ) } ) ) |
| 68 | 67 | exp32 | |- ( ( ph /\ n e. NN0 ) -> ( ( n + 1 ) <_ ( # ` F ) -> ( { x e. V | -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ n ) ) ) >. ) ` x ) } = if ( ( P ` 0 ) = ( P ` n ) , (/) , { ( P ` 0 ) , ( P ` n ) } ) -> { x e. V | -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ ( n + 1 ) ) ) ) >. ) ` x ) } = if ( ( P ` 0 ) = ( P ` ( n + 1 ) ) , (/) , { ( P ` 0 ) , ( P ` ( n + 1 ) ) } ) ) ) ) |
| 69 | 68 | a2d | |- ( ( ph /\ n e. NN0 ) -> ( ( ( n + 1 ) <_ ( # ` F ) -> { x e. V | -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ n ) ) ) >. ) ` x ) } = if ( ( P ` 0 ) = ( P ` n ) , (/) , { ( P ` 0 ) , ( P ` n ) } ) ) -> ( ( n + 1 ) <_ ( # ` F ) -> { x e. V | -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ ( n + 1 ) ) ) ) >. ) ` x ) } = if ( ( P ` 0 ) = ( P ` ( n + 1 ) ) , (/) , { ( P ` 0 ) , ( P ` ( n + 1 ) ) } ) ) ) ) |
| 70 | 19 69 | syld | |- ( ( ph /\ n e. NN0 ) -> ( ( n <_ ( # ` F ) -> { x e. V | -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ n ) ) ) >. ) ` x ) } = if ( ( P ` 0 ) = ( P ` n ) , (/) , { ( P ` 0 ) , ( P ` n ) } ) ) -> ( ( n + 1 ) <_ ( # ` F ) -> { x e. V | -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ ( n + 1 ) ) ) ) >. ) ` x ) } = if ( ( P ` 0 ) = ( P ` ( n + 1 ) ) , (/) , { ( P ` 0 ) , ( P ` ( n + 1 ) ) } ) ) ) ) |