This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The only vertices of odd degree in a graph with an Eulerian path are the endpoints, and then only if the endpoints are distinct. (Contributed by Mario Carneiro, 8-Apr-2015) (Revised by AV, 26-Feb-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eupth2.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| eupth2.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | ||
| eupth2.g | ⊢ ( 𝜑 → 𝐺 ∈ UPGraph ) | ||
| eupth2.f | ⊢ ( 𝜑 → Fun 𝐼 ) | ||
| eupth2.p | ⊢ ( 𝜑 → 𝐹 ( EulerPaths ‘ 𝐺 ) 𝑃 ) | ||
| Assertion | eupth2 | ⊢ ( 𝜑 → { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) } = if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eupth2.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | eupth2.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | |
| 3 | eupth2.g | ⊢ ( 𝜑 → 𝐺 ∈ UPGraph ) | |
| 4 | eupth2.f | ⊢ ( 𝜑 → Fun 𝐼 ) | |
| 5 | eupth2.p | ⊢ ( 𝜑 → 𝐹 ( EulerPaths ‘ 𝐺 ) 𝑃 ) | |
| 6 | eqid | ⊢ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) 〉 = 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) 〉 | |
| 7 | 1 2 3 4 5 6 | eupthvdres | ⊢ ( 𝜑 → ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) 〉 ) = ( VtxDeg ‘ 𝐺 ) ) |
| 8 | 7 | fveq1d | ⊢ ( 𝜑 → ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) 〉 ) ‘ 𝑥 ) = ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) ) |
| 9 | 8 | breq2d | ⊢ ( 𝜑 → ( 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) 〉 ) ‘ 𝑥 ) ↔ 2 ∥ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) ) ) |
| 10 | 9 | notbid | ⊢ ( 𝜑 → ( ¬ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) 〉 ) ‘ 𝑥 ) ↔ ¬ 2 ∥ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) ) ) |
| 11 | 10 | rabbidv | ⊢ ( 𝜑 → { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) 〉 ) ‘ 𝑥 ) } = { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) } ) |
| 12 | eupthiswlk | ⊢ ( 𝐹 ( EulerPaths ‘ 𝐺 ) 𝑃 → 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) | |
| 13 | wlkcl | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) | |
| 14 | 5 12 13 | 3syl | ⊢ ( 𝜑 → ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) |
| 15 | nn0re | ⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → ( ♯ ‘ 𝐹 ) ∈ ℝ ) | |
| 16 | 15 | leidd | ⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → ( ♯ ‘ 𝐹 ) ≤ ( ♯ ‘ 𝐹 ) ) |
| 17 | breq1 | ⊢ ( 𝑚 = 0 → ( 𝑚 ≤ ( ♯ ‘ 𝐹 ) ↔ 0 ≤ ( ♯ ‘ 𝐹 ) ) ) | |
| 18 | oveq2 | ⊢ ( 𝑚 = 0 → ( 0 ..^ 𝑚 ) = ( 0 ..^ 0 ) ) | |
| 19 | 18 | imaeq2d | ⊢ ( 𝑚 = 0 → ( 𝐹 “ ( 0 ..^ 𝑚 ) ) = ( 𝐹 “ ( 0 ..^ 0 ) ) ) |
| 20 | 19 | reseq2d | ⊢ ( 𝑚 = 0 → ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑚 ) ) ) = ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 0 ) ) ) ) |
| 21 | 20 | opeq2d | ⊢ ( 𝑚 = 0 → 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑚 ) ) ) 〉 = 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 0 ) ) ) 〉 ) |
| 22 | 21 | fveq2d | ⊢ ( 𝑚 = 0 → ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑚 ) ) ) 〉 ) = ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 0 ) ) ) 〉 ) ) |
| 23 | 22 | fveq1d | ⊢ ( 𝑚 = 0 → ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑚 ) ) ) 〉 ) ‘ 𝑥 ) = ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 0 ) ) ) 〉 ) ‘ 𝑥 ) ) |
| 24 | 23 | breq2d | ⊢ ( 𝑚 = 0 → ( 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑚 ) ) ) 〉 ) ‘ 𝑥 ) ↔ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 0 ) ) ) 〉 ) ‘ 𝑥 ) ) ) |
| 25 | 24 | notbid | ⊢ ( 𝑚 = 0 → ( ¬ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑚 ) ) ) 〉 ) ‘ 𝑥 ) ↔ ¬ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 0 ) ) ) 〉 ) ‘ 𝑥 ) ) ) |
| 26 | 25 | rabbidv | ⊢ ( 𝑚 = 0 → { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑚 ) ) ) 〉 ) ‘ 𝑥 ) } = { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 0 ) ) ) 〉 ) ‘ 𝑥 ) } ) |
| 27 | fveq2 | ⊢ ( 𝑚 = 0 → ( 𝑃 ‘ 𝑚 ) = ( 𝑃 ‘ 0 ) ) | |
| 28 | 27 | eqeq2d | ⊢ ( 𝑚 = 0 → ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 𝑚 ) ↔ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 0 ) ) ) |
| 29 | 27 | preq2d | ⊢ ( 𝑚 = 0 → { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 𝑚 ) } = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 0 ) } ) |
| 30 | 28 29 | ifbieq2d | ⊢ ( 𝑚 = 0 → if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 𝑚 ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 𝑚 ) } ) = if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 0 ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 0 ) } ) ) |
| 31 | 26 30 | eqeq12d | ⊢ ( 𝑚 = 0 → ( { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑚 ) ) ) 〉 ) ‘ 𝑥 ) } = if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 𝑚 ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 𝑚 ) } ) ↔ { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 0 ) ) ) 〉 ) ‘ 𝑥 ) } = if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 0 ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 0 ) } ) ) ) |
| 32 | 17 31 | imbi12d | ⊢ ( 𝑚 = 0 → ( ( 𝑚 ≤ ( ♯ ‘ 𝐹 ) → { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑚 ) ) ) 〉 ) ‘ 𝑥 ) } = if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 𝑚 ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 𝑚 ) } ) ) ↔ ( 0 ≤ ( ♯ ‘ 𝐹 ) → { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 0 ) ) ) 〉 ) ‘ 𝑥 ) } = if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 0 ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 0 ) } ) ) ) ) |
| 33 | 32 | imbi2d | ⊢ ( 𝑚 = 0 → ( ( 𝜑 → ( 𝑚 ≤ ( ♯ ‘ 𝐹 ) → { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑚 ) ) ) 〉 ) ‘ 𝑥 ) } = if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 𝑚 ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 𝑚 ) } ) ) ) ↔ ( 𝜑 → ( 0 ≤ ( ♯ ‘ 𝐹 ) → { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 0 ) ) ) 〉 ) ‘ 𝑥 ) } = if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 0 ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 0 ) } ) ) ) ) ) |
| 34 | breq1 | ⊢ ( 𝑚 = 𝑛 → ( 𝑚 ≤ ( ♯ ‘ 𝐹 ) ↔ 𝑛 ≤ ( ♯ ‘ 𝐹 ) ) ) | |
| 35 | oveq2 | ⊢ ( 𝑚 = 𝑛 → ( 0 ..^ 𝑚 ) = ( 0 ..^ 𝑛 ) ) | |
| 36 | 35 | imaeq2d | ⊢ ( 𝑚 = 𝑛 → ( 𝐹 “ ( 0 ..^ 𝑚 ) ) = ( 𝐹 “ ( 0 ..^ 𝑛 ) ) ) |
| 37 | 36 | reseq2d | ⊢ ( 𝑚 = 𝑛 → ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑚 ) ) ) = ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑛 ) ) ) ) |
| 38 | 37 | opeq2d | ⊢ ( 𝑚 = 𝑛 → 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑚 ) ) ) 〉 = 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑛 ) ) ) 〉 ) |
| 39 | 38 | fveq2d | ⊢ ( 𝑚 = 𝑛 → ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑚 ) ) ) 〉 ) = ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑛 ) ) ) 〉 ) ) |
| 40 | 39 | fveq1d | ⊢ ( 𝑚 = 𝑛 → ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑚 ) ) ) 〉 ) ‘ 𝑥 ) = ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑛 ) ) ) 〉 ) ‘ 𝑥 ) ) |
| 41 | 40 | breq2d | ⊢ ( 𝑚 = 𝑛 → ( 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑚 ) ) ) 〉 ) ‘ 𝑥 ) ↔ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑛 ) ) ) 〉 ) ‘ 𝑥 ) ) ) |
| 42 | 41 | notbid | ⊢ ( 𝑚 = 𝑛 → ( ¬ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑚 ) ) ) 〉 ) ‘ 𝑥 ) ↔ ¬ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑛 ) ) ) 〉 ) ‘ 𝑥 ) ) ) |
| 43 | 42 | rabbidv | ⊢ ( 𝑚 = 𝑛 → { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑚 ) ) ) 〉 ) ‘ 𝑥 ) } = { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑛 ) ) ) 〉 ) ‘ 𝑥 ) } ) |
| 44 | fveq2 | ⊢ ( 𝑚 = 𝑛 → ( 𝑃 ‘ 𝑚 ) = ( 𝑃 ‘ 𝑛 ) ) | |
| 45 | 44 | eqeq2d | ⊢ ( 𝑚 = 𝑛 → ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 𝑚 ) ↔ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 𝑛 ) ) ) |
| 46 | 44 | preq2d | ⊢ ( 𝑚 = 𝑛 → { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 𝑚 ) } = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 𝑛 ) } ) |
| 47 | 45 46 | ifbieq2d | ⊢ ( 𝑚 = 𝑛 → if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 𝑚 ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 𝑚 ) } ) = if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 𝑛 ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 𝑛 ) } ) ) |
| 48 | 43 47 | eqeq12d | ⊢ ( 𝑚 = 𝑛 → ( { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑚 ) ) ) 〉 ) ‘ 𝑥 ) } = if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 𝑚 ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 𝑚 ) } ) ↔ { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑛 ) ) ) 〉 ) ‘ 𝑥 ) } = if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 𝑛 ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 𝑛 ) } ) ) ) |
| 49 | 34 48 | imbi12d | ⊢ ( 𝑚 = 𝑛 → ( ( 𝑚 ≤ ( ♯ ‘ 𝐹 ) → { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑚 ) ) ) 〉 ) ‘ 𝑥 ) } = if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 𝑚 ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 𝑚 ) } ) ) ↔ ( 𝑛 ≤ ( ♯ ‘ 𝐹 ) → { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑛 ) ) ) 〉 ) ‘ 𝑥 ) } = if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 𝑛 ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 𝑛 ) } ) ) ) ) |
| 50 | 49 | imbi2d | ⊢ ( 𝑚 = 𝑛 → ( ( 𝜑 → ( 𝑚 ≤ ( ♯ ‘ 𝐹 ) → { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑚 ) ) ) 〉 ) ‘ 𝑥 ) } = if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 𝑚 ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 𝑚 ) } ) ) ) ↔ ( 𝜑 → ( 𝑛 ≤ ( ♯ ‘ 𝐹 ) → { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑛 ) ) ) 〉 ) ‘ 𝑥 ) } = if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 𝑛 ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 𝑛 ) } ) ) ) ) ) |
| 51 | breq1 | ⊢ ( 𝑚 = ( 𝑛 + 1 ) → ( 𝑚 ≤ ( ♯ ‘ 𝐹 ) ↔ ( 𝑛 + 1 ) ≤ ( ♯ ‘ 𝐹 ) ) ) | |
| 52 | oveq2 | ⊢ ( 𝑚 = ( 𝑛 + 1 ) → ( 0 ..^ 𝑚 ) = ( 0 ..^ ( 𝑛 + 1 ) ) ) | |
| 53 | 52 | imaeq2d | ⊢ ( 𝑚 = ( 𝑛 + 1 ) → ( 𝐹 “ ( 0 ..^ 𝑚 ) ) = ( 𝐹 “ ( 0 ..^ ( 𝑛 + 1 ) ) ) ) |
| 54 | 53 | reseq2d | ⊢ ( 𝑚 = ( 𝑛 + 1 ) → ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑚 ) ) ) = ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ ( 𝑛 + 1 ) ) ) ) ) |
| 55 | 54 | opeq2d | ⊢ ( 𝑚 = ( 𝑛 + 1 ) → 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑚 ) ) ) 〉 = 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ ( 𝑛 + 1 ) ) ) ) 〉 ) |
| 56 | 55 | fveq2d | ⊢ ( 𝑚 = ( 𝑛 + 1 ) → ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑚 ) ) ) 〉 ) = ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ ( 𝑛 + 1 ) ) ) ) 〉 ) ) |
| 57 | 56 | fveq1d | ⊢ ( 𝑚 = ( 𝑛 + 1 ) → ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑚 ) ) ) 〉 ) ‘ 𝑥 ) = ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ ( 𝑛 + 1 ) ) ) ) 〉 ) ‘ 𝑥 ) ) |
| 58 | 57 | breq2d | ⊢ ( 𝑚 = ( 𝑛 + 1 ) → ( 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑚 ) ) ) 〉 ) ‘ 𝑥 ) ↔ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ ( 𝑛 + 1 ) ) ) ) 〉 ) ‘ 𝑥 ) ) ) |
| 59 | 58 | notbid | ⊢ ( 𝑚 = ( 𝑛 + 1 ) → ( ¬ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑚 ) ) ) 〉 ) ‘ 𝑥 ) ↔ ¬ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ ( 𝑛 + 1 ) ) ) ) 〉 ) ‘ 𝑥 ) ) ) |
| 60 | 59 | rabbidv | ⊢ ( 𝑚 = ( 𝑛 + 1 ) → { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑚 ) ) ) 〉 ) ‘ 𝑥 ) } = { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ ( 𝑛 + 1 ) ) ) ) 〉 ) ‘ 𝑥 ) } ) |
| 61 | fveq2 | ⊢ ( 𝑚 = ( 𝑛 + 1 ) → ( 𝑃 ‘ 𝑚 ) = ( 𝑃 ‘ ( 𝑛 + 1 ) ) ) | |
| 62 | 61 | eqeq2d | ⊢ ( 𝑚 = ( 𝑛 + 1 ) → ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 𝑚 ) ↔ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( 𝑛 + 1 ) ) ) ) |
| 63 | 61 | preq2d | ⊢ ( 𝑚 = ( 𝑛 + 1 ) → { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 𝑚 ) } = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ ( 𝑛 + 1 ) ) } ) |
| 64 | 62 63 | ifbieq2d | ⊢ ( 𝑚 = ( 𝑛 + 1 ) → if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 𝑚 ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 𝑚 ) } ) = if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( 𝑛 + 1 ) ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ ( 𝑛 + 1 ) ) } ) ) |
| 65 | 60 64 | eqeq12d | ⊢ ( 𝑚 = ( 𝑛 + 1 ) → ( { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑚 ) ) ) 〉 ) ‘ 𝑥 ) } = if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 𝑚 ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 𝑚 ) } ) ↔ { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ ( 𝑛 + 1 ) ) ) ) 〉 ) ‘ 𝑥 ) } = if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( 𝑛 + 1 ) ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ ( 𝑛 + 1 ) ) } ) ) ) |
| 66 | 51 65 | imbi12d | ⊢ ( 𝑚 = ( 𝑛 + 1 ) → ( ( 𝑚 ≤ ( ♯ ‘ 𝐹 ) → { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑚 ) ) ) 〉 ) ‘ 𝑥 ) } = if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 𝑚 ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 𝑚 ) } ) ) ↔ ( ( 𝑛 + 1 ) ≤ ( ♯ ‘ 𝐹 ) → { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ ( 𝑛 + 1 ) ) ) ) 〉 ) ‘ 𝑥 ) } = if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( 𝑛 + 1 ) ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ ( 𝑛 + 1 ) ) } ) ) ) ) |
| 67 | 66 | imbi2d | ⊢ ( 𝑚 = ( 𝑛 + 1 ) → ( ( 𝜑 → ( 𝑚 ≤ ( ♯ ‘ 𝐹 ) → { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑚 ) ) ) 〉 ) ‘ 𝑥 ) } = if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 𝑚 ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 𝑚 ) } ) ) ) ↔ ( 𝜑 → ( ( 𝑛 + 1 ) ≤ ( ♯ ‘ 𝐹 ) → { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ ( 𝑛 + 1 ) ) ) ) 〉 ) ‘ 𝑥 ) } = if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( 𝑛 + 1 ) ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ ( 𝑛 + 1 ) ) } ) ) ) ) ) |
| 68 | breq1 | ⊢ ( 𝑚 = ( ♯ ‘ 𝐹 ) → ( 𝑚 ≤ ( ♯ ‘ 𝐹 ) ↔ ( ♯ ‘ 𝐹 ) ≤ ( ♯ ‘ 𝐹 ) ) ) | |
| 69 | oveq2 | ⊢ ( 𝑚 = ( ♯ ‘ 𝐹 ) → ( 0 ..^ 𝑚 ) = ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) | |
| 70 | 69 | imaeq2d | ⊢ ( 𝑚 = ( ♯ ‘ 𝐹 ) → ( 𝐹 “ ( 0 ..^ 𝑚 ) ) = ( 𝐹 “ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) |
| 71 | 70 | reseq2d | ⊢ ( 𝑚 = ( ♯ ‘ 𝐹 ) → ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑚 ) ) ) = ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ) |
| 72 | 71 | opeq2d | ⊢ ( 𝑚 = ( ♯ ‘ 𝐹 ) → 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑚 ) ) ) 〉 = 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) 〉 ) |
| 73 | 72 | fveq2d | ⊢ ( 𝑚 = ( ♯ ‘ 𝐹 ) → ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑚 ) ) ) 〉 ) = ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) 〉 ) ) |
| 74 | 73 | fveq1d | ⊢ ( 𝑚 = ( ♯ ‘ 𝐹 ) → ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑚 ) ) ) 〉 ) ‘ 𝑥 ) = ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) 〉 ) ‘ 𝑥 ) ) |
| 75 | 74 | breq2d | ⊢ ( 𝑚 = ( ♯ ‘ 𝐹 ) → ( 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑚 ) ) ) 〉 ) ‘ 𝑥 ) ↔ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) 〉 ) ‘ 𝑥 ) ) ) |
| 76 | 75 | notbid | ⊢ ( 𝑚 = ( ♯ ‘ 𝐹 ) → ( ¬ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑚 ) ) ) 〉 ) ‘ 𝑥 ) ↔ ¬ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) 〉 ) ‘ 𝑥 ) ) ) |
| 77 | 76 | rabbidv | ⊢ ( 𝑚 = ( ♯ ‘ 𝐹 ) → { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑚 ) ) ) 〉 ) ‘ 𝑥 ) } = { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) 〉 ) ‘ 𝑥 ) } ) |
| 78 | fveq2 | ⊢ ( 𝑚 = ( ♯ ‘ 𝐹 ) → ( 𝑃 ‘ 𝑚 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) | |
| 79 | 78 | eqeq2d | ⊢ ( 𝑚 = ( ♯ ‘ 𝐹 ) → ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 𝑚 ) ↔ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) ) |
| 80 | 78 | preq2d | ⊢ ( 𝑚 = ( ♯ ‘ 𝐹 ) → { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 𝑚 ) } = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) } ) |
| 81 | 79 80 | ifbieq2d | ⊢ ( 𝑚 = ( ♯ ‘ 𝐹 ) → if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 𝑚 ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 𝑚 ) } ) = if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) } ) ) |
| 82 | 77 81 | eqeq12d | ⊢ ( 𝑚 = ( ♯ ‘ 𝐹 ) → ( { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑚 ) ) ) 〉 ) ‘ 𝑥 ) } = if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 𝑚 ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 𝑚 ) } ) ↔ { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) 〉 ) ‘ 𝑥 ) } = if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) } ) ) ) |
| 83 | 68 82 | imbi12d | ⊢ ( 𝑚 = ( ♯ ‘ 𝐹 ) → ( ( 𝑚 ≤ ( ♯ ‘ 𝐹 ) → { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑚 ) ) ) 〉 ) ‘ 𝑥 ) } = if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 𝑚 ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 𝑚 ) } ) ) ↔ ( ( ♯ ‘ 𝐹 ) ≤ ( ♯ ‘ 𝐹 ) → { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) 〉 ) ‘ 𝑥 ) } = if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) } ) ) ) ) |
| 84 | 83 | imbi2d | ⊢ ( 𝑚 = ( ♯ ‘ 𝐹 ) → ( ( 𝜑 → ( 𝑚 ≤ ( ♯ ‘ 𝐹 ) → { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑚 ) ) ) 〉 ) ‘ 𝑥 ) } = if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 𝑚 ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 𝑚 ) } ) ) ) ↔ ( 𝜑 → ( ( ♯ ‘ 𝐹 ) ≤ ( ♯ ‘ 𝐹 ) → { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) 〉 ) ‘ 𝑥 ) } = if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) } ) ) ) ) ) |
| 85 | 1 2 3 4 5 | eupth2lemb | ⊢ ( 𝜑 → { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 0 ) ) ) 〉 ) ‘ 𝑥 ) } = ∅ ) |
| 86 | eqid | ⊢ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 0 ) | |
| 87 | 86 | iftruei | ⊢ if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 0 ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 0 ) } ) = ∅ |
| 88 | 85 87 | eqtr4di | ⊢ ( 𝜑 → { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 0 ) ) ) 〉 ) ‘ 𝑥 ) } = if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 0 ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 0 ) } ) ) |
| 89 | 88 | a1d | ⊢ ( 𝜑 → ( 0 ≤ ( ♯ ‘ 𝐹 ) → { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 0 ) ) ) 〉 ) ‘ 𝑥 ) } = if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 0 ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 0 ) } ) ) ) |
| 90 | 1 2 3 4 5 | eupth2lems | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑛 ≤ ( ♯ ‘ 𝐹 ) → { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑛 ) ) ) 〉 ) ‘ 𝑥 ) } = if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 𝑛 ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 𝑛 ) } ) ) → ( ( 𝑛 + 1 ) ≤ ( ♯ ‘ 𝐹 ) → { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ ( 𝑛 + 1 ) ) ) ) 〉 ) ‘ 𝑥 ) } = if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( 𝑛 + 1 ) ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ ( 𝑛 + 1 ) ) } ) ) ) ) |
| 91 | 90 | expcom | ⊢ ( 𝑛 ∈ ℕ0 → ( 𝜑 → ( ( 𝑛 ≤ ( ♯ ‘ 𝐹 ) → { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑛 ) ) ) 〉 ) ‘ 𝑥 ) } = if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 𝑛 ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 𝑛 ) } ) ) → ( ( 𝑛 + 1 ) ≤ ( ♯ ‘ 𝐹 ) → { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ ( 𝑛 + 1 ) ) ) ) 〉 ) ‘ 𝑥 ) } = if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( 𝑛 + 1 ) ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ ( 𝑛 + 1 ) ) } ) ) ) ) ) |
| 92 | 91 | a2d | ⊢ ( 𝑛 ∈ ℕ0 → ( ( 𝜑 → ( 𝑛 ≤ ( ♯ ‘ 𝐹 ) → { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑛 ) ) ) 〉 ) ‘ 𝑥 ) } = if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 𝑛 ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 𝑛 ) } ) ) ) → ( 𝜑 → ( ( 𝑛 + 1 ) ≤ ( ♯ ‘ 𝐹 ) → { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ ( 𝑛 + 1 ) ) ) ) 〉 ) ‘ 𝑥 ) } = if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( 𝑛 + 1 ) ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ ( 𝑛 + 1 ) ) } ) ) ) ) ) |
| 93 | 33 50 67 84 89 92 | nn0ind | ⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → ( 𝜑 → ( ( ♯ ‘ 𝐹 ) ≤ ( ♯ ‘ 𝐹 ) → { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) 〉 ) ‘ 𝑥 ) } = if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) } ) ) ) ) |
| 94 | 16 93 | mpid | ⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → ( 𝜑 → { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) 〉 ) ‘ 𝑥 ) } = if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) } ) ) ) |
| 95 | 14 94 | mpcom | ⊢ ( 𝜑 → { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) 〉 ) ‘ 𝑥 ) } = if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) } ) ) |
| 96 | 11 95 | eqtr3d | ⊢ ( 𝜑 → { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) } = if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) } ) ) |