This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The endpoints of a walk are vertices. (Contributed by AV, 31-Jan-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | wlkpvtx.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| Assertion | wlkepvtx | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ( ( 𝑃 ‘ 0 ) ∈ 𝑉 ∧ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∈ 𝑉 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wlkpvtx.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | 1 | wlkp | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) |
| 3 | wlkcl | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) | |
| 4 | 0elfz | ⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → 0 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) | |
| 5 | ffvelcdm | ⊢ ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ∧ 0 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) → ( 𝑃 ‘ 0 ) ∈ 𝑉 ) | |
| 6 | 4 5 | sylan2 | ⊢ ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) → ( 𝑃 ‘ 0 ) ∈ 𝑉 ) |
| 7 | nn0fz0 | ⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ↔ ( ♯ ‘ 𝐹 ) ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) | |
| 8 | ffvelcdm | ⊢ ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ∧ ( ♯ ‘ 𝐹 ) ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) → ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∈ 𝑉 ) | |
| 9 | 7 8 | sylan2b | ⊢ ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) → ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∈ 𝑉 ) |
| 10 | 6 9 | jca | ⊢ ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) → ( ( 𝑃 ‘ 0 ) ∈ 𝑉 ∧ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∈ 𝑉 ) ) |
| 11 | 2 3 10 | syl2anc | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ( ( 𝑃 ‘ 0 ) ∈ 𝑉 ∧ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∈ 𝑉 ) ) |