This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for eupth2 (induction basis): There are no vertices of odd degree in an Eulerian path of length 0, having no edge and identical endpoints (the single vertex of the Eulerian path). Formerly part of proof for eupth2 . (Contributed by Mario Carneiro, 8-Apr-2015) (Revised by AV, 26-Feb-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eupth2.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| eupth2.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | ||
| eupth2.g | ⊢ ( 𝜑 → 𝐺 ∈ UPGraph ) | ||
| eupth2.f | ⊢ ( 𝜑 → Fun 𝐼 ) | ||
| eupth2.p | ⊢ ( 𝜑 → 𝐹 ( EulerPaths ‘ 𝐺 ) 𝑃 ) | ||
| Assertion | eupth2lemb | ⊢ ( 𝜑 → { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 0 ) ) ) 〉 ) ‘ 𝑥 ) } = ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eupth2.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | eupth2.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | |
| 3 | eupth2.g | ⊢ ( 𝜑 → 𝐺 ∈ UPGraph ) | |
| 4 | eupth2.f | ⊢ ( 𝜑 → Fun 𝐼 ) | |
| 5 | eupth2.p | ⊢ ( 𝜑 → 𝐹 ( EulerPaths ‘ 𝐺 ) 𝑃 ) | |
| 6 | z0even | ⊢ 2 ∥ 0 | |
| 7 | 1 | fvexi | ⊢ 𝑉 ∈ V |
| 8 | 2 | fvexi | ⊢ 𝐼 ∈ V |
| 9 | 8 | resex | ⊢ ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 0 ) ) ) ∈ V |
| 10 | 7 9 | pm3.2i | ⊢ ( 𝑉 ∈ V ∧ ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 0 ) ) ) ∈ V ) |
| 11 | opvtxfv | ⊢ ( ( 𝑉 ∈ V ∧ ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 0 ) ) ) ∈ V ) → ( Vtx ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 0 ) ) ) 〉 ) = 𝑉 ) | |
| 12 | 10 11 | mp1i | ⊢ ( 𝜑 → ( Vtx ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 0 ) ) ) 〉 ) = 𝑉 ) |
| 13 | 12 | eqcomd | ⊢ ( 𝜑 → 𝑉 = ( Vtx ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 0 ) ) ) 〉 ) ) |
| 14 | 13 | eleq2d | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑉 ↔ 𝑥 ∈ ( Vtx ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 0 ) ) ) 〉 ) ) ) |
| 15 | 14 | biimpa | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → 𝑥 ∈ ( Vtx ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 0 ) ) ) 〉 ) ) |
| 16 | opiedgfv | ⊢ ( ( 𝑉 ∈ V ∧ ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 0 ) ) ) ∈ V ) → ( iEdg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 0 ) ) ) 〉 ) = ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 0 ) ) ) ) | |
| 17 | 10 16 | mp1i | ⊢ ( 𝜑 → ( iEdg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 0 ) ) ) 〉 ) = ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 0 ) ) ) ) |
| 18 | fzo0 | ⊢ ( 0 ..^ 0 ) = ∅ | |
| 19 | 18 | imaeq2i | ⊢ ( 𝐹 “ ( 0 ..^ 0 ) ) = ( 𝐹 “ ∅ ) |
| 20 | ima0 | ⊢ ( 𝐹 “ ∅ ) = ∅ | |
| 21 | 19 20 | eqtri | ⊢ ( 𝐹 “ ( 0 ..^ 0 ) ) = ∅ |
| 22 | 21 | reseq2i | ⊢ ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 0 ) ) ) = ( 𝐼 ↾ ∅ ) |
| 23 | res0 | ⊢ ( 𝐼 ↾ ∅ ) = ∅ | |
| 24 | 22 23 | eqtri | ⊢ ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 0 ) ) ) = ∅ |
| 25 | 17 24 | eqtrdi | ⊢ ( 𝜑 → ( iEdg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 0 ) ) ) 〉 ) = ∅ ) |
| 26 | 25 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → ( iEdg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 0 ) ) ) 〉 ) = ∅ ) |
| 27 | eqid | ⊢ ( Vtx ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 0 ) ) ) 〉 ) = ( Vtx ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 0 ) ) ) 〉 ) | |
| 28 | eqid | ⊢ ( iEdg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 0 ) ) ) 〉 ) = ( iEdg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 0 ) ) ) 〉 ) | |
| 29 | 27 28 | vtxdg0e | ⊢ ( ( 𝑥 ∈ ( Vtx ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 0 ) ) ) 〉 ) ∧ ( iEdg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 0 ) ) ) 〉 ) = ∅ ) → ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 0 ) ) ) 〉 ) ‘ 𝑥 ) = 0 ) |
| 30 | 15 26 29 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 0 ) ) ) 〉 ) ‘ 𝑥 ) = 0 ) |
| 31 | 6 30 | breqtrrid | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 0 ) ) ) 〉 ) ‘ 𝑥 ) ) |
| 32 | 31 | notnotd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → ¬ ¬ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 0 ) ) ) 〉 ) ‘ 𝑥 ) ) |
| 33 | 32 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑉 ¬ ¬ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 0 ) ) ) 〉 ) ‘ 𝑥 ) ) |
| 34 | rabeq0 | ⊢ ( { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 0 ) ) ) 〉 ) ‘ 𝑥 ) } = ∅ ↔ ∀ 𝑥 ∈ 𝑉 ¬ ¬ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 0 ) ) ) 〉 ) ‘ 𝑥 ) ) | |
| 35 | 33 34 | sylibr | ⊢ ( 𝜑 → { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 0 ) ) ) 〉 ) ‘ 𝑥 ) } = ∅ ) |