This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for eupth2 (induction basis): There are no vertices of odd degree in an Eulerian path of length 0, having no edge and identical endpoints (the single vertex of the Eulerian path). Formerly part of proof for eupth2 . (Contributed by Mario Carneiro, 8-Apr-2015) (Revised by AV, 26-Feb-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eupth2.v | |- V = ( Vtx ` G ) |
|
| eupth2.i | |- I = ( iEdg ` G ) |
||
| eupth2.g | |- ( ph -> G e. UPGraph ) |
||
| eupth2.f | |- ( ph -> Fun I ) |
||
| eupth2.p | |- ( ph -> F ( EulerPaths ` G ) P ) |
||
| Assertion | eupth2lemb | |- ( ph -> { x e. V | -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ 0 ) ) ) >. ) ` x ) } = (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eupth2.v | |- V = ( Vtx ` G ) |
|
| 2 | eupth2.i | |- I = ( iEdg ` G ) |
|
| 3 | eupth2.g | |- ( ph -> G e. UPGraph ) |
|
| 4 | eupth2.f | |- ( ph -> Fun I ) |
|
| 5 | eupth2.p | |- ( ph -> F ( EulerPaths ` G ) P ) |
|
| 6 | z0even | |- 2 || 0 |
|
| 7 | 1 | fvexi | |- V e. _V |
| 8 | 2 | fvexi | |- I e. _V |
| 9 | 8 | resex | |- ( I |` ( F " ( 0 ..^ 0 ) ) ) e. _V |
| 10 | 7 9 | pm3.2i | |- ( V e. _V /\ ( I |` ( F " ( 0 ..^ 0 ) ) ) e. _V ) |
| 11 | opvtxfv | |- ( ( V e. _V /\ ( I |` ( F " ( 0 ..^ 0 ) ) ) e. _V ) -> ( Vtx ` <. V , ( I |` ( F " ( 0 ..^ 0 ) ) ) >. ) = V ) |
|
| 12 | 10 11 | mp1i | |- ( ph -> ( Vtx ` <. V , ( I |` ( F " ( 0 ..^ 0 ) ) ) >. ) = V ) |
| 13 | 12 | eqcomd | |- ( ph -> V = ( Vtx ` <. V , ( I |` ( F " ( 0 ..^ 0 ) ) ) >. ) ) |
| 14 | 13 | eleq2d | |- ( ph -> ( x e. V <-> x e. ( Vtx ` <. V , ( I |` ( F " ( 0 ..^ 0 ) ) ) >. ) ) ) |
| 15 | 14 | biimpa | |- ( ( ph /\ x e. V ) -> x e. ( Vtx ` <. V , ( I |` ( F " ( 0 ..^ 0 ) ) ) >. ) ) |
| 16 | opiedgfv | |- ( ( V e. _V /\ ( I |` ( F " ( 0 ..^ 0 ) ) ) e. _V ) -> ( iEdg ` <. V , ( I |` ( F " ( 0 ..^ 0 ) ) ) >. ) = ( I |` ( F " ( 0 ..^ 0 ) ) ) ) |
|
| 17 | 10 16 | mp1i | |- ( ph -> ( iEdg ` <. V , ( I |` ( F " ( 0 ..^ 0 ) ) ) >. ) = ( I |` ( F " ( 0 ..^ 0 ) ) ) ) |
| 18 | fzo0 | |- ( 0 ..^ 0 ) = (/) |
|
| 19 | 18 | imaeq2i | |- ( F " ( 0 ..^ 0 ) ) = ( F " (/) ) |
| 20 | ima0 | |- ( F " (/) ) = (/) |
|
| 21 | 19 20 | eqtri | |- ( F " ( 0 ..^ 0 ) ) = (/) |
| 22 | 21 | reseq2i | |- ( I |` ( F " ( 0 ..^ 0 ) ) ) = ( I |` (/) ) |
| 23 | res0 | |- ( I |` (/) ) = (/) |
|
| 24 | 22 23 | eqtri | |- ( I |` ( F " ( 0 ..^ 0 ) ) ) = (/) |
| 25 | 17 24 | eqtrdi | |- ( ph -> ( iEdg ` <. V , ( I |` ( F " ( 0 ..^ 0 ) ) ) >. ) = (/) ) |
| 26 | 25 | adantr | |- ( ( ph /\ x e. V ) -> ( iEdg ` <. V , ( I |` ( F " ( 0 ..^ 0 ) ) ) >. ) = (/) ) |
| 27 | eqid | |- ( Vtx ` <. V , ( I |` ( F " ( 0 ..^ 0 ) ) ) >. ) = ( Vtx ` <. V , ( I |` ( F " ( 0 ..^ 0 ) ) ) >. ) |
|
| 28 | eqid | |- ( iEdg ` <. V , ( I |` ( F " ( 0 ..^ 0 ) ) ) >. ) = ( iEdg ` <. V , ( I |` ( F " ( 0 ..^ 0 ) ) ) >. ) |
|
| 29 | 27 28 | vtxdg0e | |- ( ( x e. ( Vtx ` <. V , ( I |` ( F " ( 0 ..^ 0 ) ) ) >. ) /\ ( iEdg ` <. V , ( I |` ( F " ( 0 ..^ 0 ) ) ) >. ) = (/) ) -> ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ 0 ) ) ) >. ) ` x ) = 0 ) |
| 30 | 15 26 29 | syl2anc | |- ( ( ph /\ x e. V ) -> ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ 0 ) ) ) >. ) ` x ) = 0 ) |
| 31 | 6 30 | breqtrrid | |- ( ( ph /\ x e. V ) -> 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ 0 ) ) ) >. ) ` x ) ) |
| 32 | 31 | notnotd | |- ( ( ph /\ x e. V ) -> -. -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ 0 ) ) ) >. ) ` x ) ) |
| 33 | 32 | ralrimiva | |- ( ph -> A. x e. V -. -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ 0 ) ) ) >. ) ` x ) ) |
| 34 | rabeq0 | |- ( { x e. V | -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ 0 ) ) ) >. ) ` x ) } = (/) <-> A. x e. V -. -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ 0 ) ) ) >. ) ` x ) ) |
|
| 35 | 33 34 | sylibr | |- ( ph -> { x e. V | -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ 0 ) ) ) >. ) ` x ) } = (/) ) |