This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Formerly part of proof of eupth2lem3 : If an edge (not a loop) is added to a trail, the degree of vertices not being end vertices of this edge remains odd if it was odd before (regarding the subgraphs induced by the involved trails). Remark: This seems to be not valid for hyperedges joining more vertices than ( P0 ) and ( PN ) : if there is a third vertex in the edge, and this vertex is already contained in the trail, then the degree of this vertex could be affected by this edge! (Contributed by Mario Carneiro, 8-Apr-2015) (Revised by AV, 25-Feb-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | trlsegvdeg.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| trlsegvdeg.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | ||
| trlsegvdeg.f | ⊢ ( 𝜑 → Fun 𝐼 ) | ||
| trlsegvdeg.n | ⊢ ( 𝜑 → 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) | ||
| trlsegvdeg.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) | ||
| trlsegvdeg.w | ⊢ ( 𝜑 → 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ) | ||
| trlsegvdeg.vx | ⊢ ( 𝜑 → ( Vtx ‘ 𝑋 ) = 𝑉 ) | ||
| trlsegvdeg.vy | ⊢ ( 𝜑 → ( Vtx ‘ 𝑌 ) = 𝑉 ) | ||
| trlsegvdeg.vz | ⊢ ( 𝜑 → ( Vtx ‘ 𝑍 ) = 𝑉 ) | ||
| trlsegvdeg.ix | ⊢ ( 𝜑 → ( iEdg ‘ 𝑋 ) = ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ) ) | ||
| trlsegvdeg.iy | ⊢ ( 𝜑 → ( iEdg ‘ 𝑌 ) = { 〈 ( 𝐹 ‘ 𝑁 ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) 〉 } ) | ||
| trlsegvdeg.iz | ⊢ ( 𝜑 → ( iEdg ‘ 𝑍 ) = ( 𝐼 ↾ ( 𝐹 “ ( 0 ... 𝑁 ) ) ) ) | ||
| eupth2lem3.o | ⊢ ( 𝜑 → { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑥 ) } = if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 𝑁 ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 𝑁 ) } ) ) | ||
| eupth2lem3.e | ⊢ ( 𝜑 → ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) = { ( 𝑃 ‘ 𝑁 ) , ( 𝑃 ‘ ( 𝑁 + 1 ) ) } ) | ||
| Assertion | eupth2lem3lem6 | ⊢ ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ∧ ( 𝑈 ≠ ( 𝑃 ‘ 𝑁 ) ∧ 𝑈 ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) ) → ( ¬ 2 ∥ ( ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) + ( ( VtxDeg ‘ 𝑌 ) ‘ 𝑈 ) ) ↔ 𝑈 ∈ if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ ( 𝑁 + 1 ) ) } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | trlsegvdeg.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | trlsegvdeg.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | |
| 3 | trlsegvdeg.f | ⊢ ( 𝜑 → Fun 𝐼 ) | |
| 4 | trlsegvdeg.n | ⊢ ( 𝜑 → 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) | |
| 5 | trlsegvdeg.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) | |
| 6 | trlsegvdeg.w | ⊢ ( 𝜑 → 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ) | |
| 7 | trlsegvdeg.vx | ⊢ ( 𝜑 → ( Vtx ‘ 𝑋 ) = 𝑉 ) | |
| 8 | trlsegvdeg.vy | ⊢ ( 𝜑 → ( Vtx ‘ 𝑌 ) = 𝑉 ) | |
| 9 | trlsegvdeg.vz | ⊢ ( 𝜑 → ( Vtx ‘ 𝑍 ) = 𝑉 ) | |
| 10 | trlsegvdeg.ix | ⊢ ( 𝜑 → ( iEdg ‘ 𝑋 ) = ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ) ) | |
| 11 | trlsegvdeg.iy | ⊢ ( 𝜑 → ( iEdg ‘ 𝑌 ) = { 〈 ( 𝐹 ‘ 𝑁 ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) 〉 } ) | |
| 12 | trlsegvdeg.iz | ⊢ ( 𝜑 → ( iEdg ‘ 𝑍 ) = ( 𝐼 ↾ ( 𝐹 “ ( 0 ... 𝑁 ) ) ) ) | |
| 13 | eupth2lem3.o | ⊢ ( 𝜑 → { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑥 ) } = if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 𝑁 ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 𝑁 ) } ) ) | |
| 14 | eupth2lem3.e | ⊢ ( 𝜑 → ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) = { ( 𝑃 ‘ 𝑁 ) , ( 𝑃 ‘ ( 𝑁 + 1 ) ) } ) | |
| 15 | 11 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ∧ ( 𝑈 ≠ ( 𝑃 ‘ 𝑁 ) ∧ 𝑈 ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) ) → ( iEdg ‘ 𝑌 ) = { 〈 ( 𝐹 ‘ 𝑁 ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) 〉 } ) |
| 16 | 8 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ∧ ( 𝑈 ≠ ( 𝑃 ‘ 𝑁 ) ∧ 𝑈 ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) ) → ( Vtx ‘ 𝑌 ) = 𝑉 ) |
| 17 | fvexd | ⊢ ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ∧ ( 𝑈 ≠ ( 𝑃 ‘ 𝑁 ) ∧ 𝑈 ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) ) → ( 𝐹 ‘ 𝑁 ) ∈ V ) | |
| 18 | 5 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ∧ ( 𝑈 ≠ ( 𝑃 ‘ 𝑁 ) ∧ 𝑈 ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) ) → 𝑈 ∈ 𝑉 ) |
| 19 | fvexd | ⊢ ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ∧ ( 𝑈 ≠ ( 𝑃 ‘ 𝑁 ) ∧ 𝑈 ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) ) → ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) ∈ V ) | |
| 20 | simpl | ⊢ ( ( 𝑈 ≠ ( 𝑃 ‘ 𝑁 ) ∧ 𝑈 ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) → 𝑈 ≠ ( 𝑃 ‘ 𝑁 ) ) | |
| 21 | 20 | adantl | ⊢ ( ( ( 𝑃 ‘ 𝑁 ) ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ∧ ( 𝑈 ≠ ( 𝑃 ‘ 𝑁 ) ∧ 𝑈 ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) ) → 𝑈 ≠ ( 𝑃 ‘ 𝑁 ) ) |
| 22 | simpr | ⊢ ( ( 𝑈 ≠ ( 𝑃 ‘ 𝑁 ) ∧ 𝑈 ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) → 𝑈 ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) | |
| 23 | 22 | adantl | ⊢ ( ( ( 𝑃 ‘ 𝑁 ) ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ∧ ( 𝑈 ≠ ( 𝑃 ‘ 𝑁 ) ∧ 𝑈 ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) ) → 𝑈 ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) |
| 24 | 21 23 | nelprd | ⊢ ( ( ( 𝑃 ‘ 𝑁 ) ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ∧ ( 𝑈 ≠ ( 𝑃 ‘ 𝑁 ) ∧ 𝑈 ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) ) → ¬ 𝑈 ∈ { ( 𝑃 ‘ 𝑁 ) , ( 𝑃 ‘ ( 𝑁 + 1 ) ) } ) |
| 25 | df-nel | ⊢ ( 𝑈 ∉ { ( 𝑃 ‘ 𝑁 ) , ( 𝑃 ‘ ( 𝑁 + 1 ) ) } ↔ ¬ 𝑈 ∈ { ( 𝑃 ‘ 𝑁 ) , ( 𝑃 ‘ ( 𝑁 + 1 ) ) } ) | |
| 26 | 24 25 | sylibr | ⊢ ( ( ( 𝑃 ‘ 𝑁 ) ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ∧ ( 𝑈 ≠ ( 𝑃 ‘ 𝑁 ) ∧ 𝑈 ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) ) → 𝑈 ∉ { ( 𝑃 ‘ 𝑁 ) , ( 𝑃 ‘ ( 𝑁 + 1 ) ) } ) |
| 27 | neleq2 | ⊢ ( ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) = { ( 𝑃 ‘ 𝑁 ) , ( 𝑃 ‘ ( 𝑁 + 1 ) ) } → ( 𝑈 ∉ ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) ↔ 𝑈 ∉ { ( 𝑃 ‘ 𝑁 ) , ( 𝑃 ‘ ( 𝑁 + 1 ) ) } ) ) | |
| 28 | 26 27 | imbitrrid | ⊢ ( ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) = { ( 𝑃 ‘ 𝑁 ) , ( 𝑃 ‘ ( 𝑁 + 1 ) ) } → ( ( ( 𝑃 ‘ 𝑁 ) ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ∧ ( 𝑈 ≠ ( 𝑃 ‘ 𝑁 ) ∧ 𝑈 ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) ) → 𝑈 ∉ ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) ) ) |
| 29 | 28 | expd | ⊢ ( ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) = { ( 𝑃 ‘ 𝑁 ) , ( 𝑃 ‘ ( 𝑁 + 1 ) ) } → ( ( 𝑃 ‘ 𝑁 ) ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) → ( ( 𝑈 ≠ ( 𝑃 ‘ 𝑁 ) ∧ 𝑈 ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) → 𝑈 ∉ ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) ) ) ) |
| 30 | 14 29 | syl | ⊢ ( 𝜑 → ( ( 𝑃 ‘ 𝑁 ) ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) → ( ( 𝑈 ≠ ( 𝑃 ‘ 𝑁 ) ∧ 𝑈 ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) → 𝑈 ∉ ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) ) ) ) |
| 31 | 30 | 3imp | ⊢ ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ∧ ( 𝑈 ≠ ( 𝑃 ‘ 𝑁 ) ∧ 𝑈 ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) ) → 𝑈 ∉ ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) ) |
| 32 | 15 16 17 18 19 31 | 1hevtxdg0 | ⊢ ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ∧ ( 𝑈 ≠ ( 𝑃 ‘ 𝑁 ) ∧ 𝑈 ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) ) → ( ( VtxDeg ‘ 𝑌 ) ‘ 𝑈 ) = 0 ) |
| 33 | 32 | oveq2d | ⊢ ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ∧ ( 𝑈 ≠ ( 𝑃 ‘ 𝑁 ) ∧ 𝑈 ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) ) → ( ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) + ( ( VtxDeg ‘ 𝑌 ) ‘ 𝑈 ) ) = ( ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) + 0 ) ) |
| 34 | 1 2 3 4 5 6 7 8 9 10 11 12 | eupth2lem3lem1 | ⊢ ( 𝜑 → ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) ∈ ℕ0 ) |
| 35 | 34 | nn0cnd | ⊢ ( 𝜑 → ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) ∈ ℂ ) |
| 36 | 35 | addridd | ⊢ ( 𝜑 → ( ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) + 0 ) = ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) ) |
| 37 | 36 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ∧ ( 𝑈 ≠ ( 𝑃 ‘ 𝑁 ) ∧ 𝑈 ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) ) → ( ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) + 0 ) = ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) ) |
| 38 | 33 37 | eqtrd | ⊢ ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ∧ ( 𝑈 ≠ ( 𝑃 ‘ 𝑁 ) ∧ 𝑈 ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) ) → ( ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) + ( ( VtxDeg ‘ 𝑌 ) ‘ 𝑈 ) ) = ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) ) |
| 39 | 38 | breq2d | ⊢ ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ∧ ( 𝑈 ≠ ( 𝑃 ‘ 𝑁 ) ∧ 𝑈 ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) ) → ( 2 ∥ ( ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) + ( ( VtxDeg ‘ 𝑌 ) ‘ 𝑈 ) ) ↔ 2 ∥ ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) ) ) |
| 40 | 39 | notbid | ⊢ ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ∧ ( 𝑈 ≠ ( 𝑃 ‘ 𝑁 ) ∧ 𝑈 ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) ) → ( ¬ 2 ∥ ( ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) + ( ( VtxDeg ‘ 𝑌 ) ‘ 𝑈 ) ) ↔ ¬ 2 ∥ ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) ) ) |
| 41 | fveq2 | ⊢ ( 𝑥 = 𝑈 → ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑥 ) = ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) ) | |
| 42 | 41 | breq2d | ⊢ ( 𝑥 = 𝑈 → ( 2 ∥ ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑥 ) ↔ 2 ∥ ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) ) ) |
| 43 | 42 | notbid | ⊢ ( 𝑥 = 𝑈 → ( ¬ 2 ∥ ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑥 ) ↔ ¬ 2 ∥ ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) ) ) |
| 44 | 43 | elrab3 | ⊢ ( 𝑈 ∈ 𝑉 → ( 𝑈 ∈ { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑥 ) } ↔ ¬ 2 ∥ ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) ) ) |
| 45 | 5 44 | syl | ⊢ ( 𝜑 → ( 𝑈 ∈ { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑥 ) } ↔ ¬ 2 ∥ ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) ) ) |
| 46 | 13 | eleq2d | ⊢ ( 𝜑 → ( 𝑈 ∈ { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑥 ) } ↔ 𝑈 ∈ if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 𝑁 ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 𝑁 ) } ) ) ) |
| 47 | 45 46 | bitr3d | ⊢ ( 𝜑 → ( ¬ 2 ∥ ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) ↔ 𝑈 ∈ if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 𝑁 ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 𝑁 ) } ) ) ) |
| 48 | 47 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ∧ ( 𝑈 ≠ ( 𝑃 ‘ 𝑁 ) ∧ 𝑈 ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) ) → ( ¬ 2 ∥ ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) ↔ 𝑈 ∈ if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 𝑁 ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 𝑁 ) } ) ) ) |
| 49 | 20 | 3ad2ant3 | ⊢ ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ∧ ( 𝑈 ≠ ( 𝑃 ‘ 𝑁 ) ∧ 𝑈 ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) ) → 𝑈 ≠ ( 𝑃 ‘ 𝑁 ) ) |
| 50 | 22 | 3ad2ant3 | ⊢ ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ∧ ( 𝑈 ≠ ( 𝑃 ‘ 𝑁 ) ∧ 𝑈 ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) ) → 𝑈 ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) |
| 51 | 49 50 | 2thd | ⊢ ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ∧ ( 𝑈 ≠ ( 𝑃 ‘ 𝑁 ) ∧ 𝑈 ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) ) → ( 𝑈 ≠ ( 𝑃 ‘ 𝑁 ) ↔ 𝑈 ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) ) |
| 52 | neeq1 | ⊢ ( 𝑈 = ( 𝑃 ‘ 0 ) → ( 𝑈 ≠ ( 𝑃 ‘ 𝑁 ) ↔ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 𝑁 ) ) ) | |
| 53 | neeq1 | ⊢ ( 𝑈 = ( 𝑃 ‘ 0 ) → ( 𝑈 ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ↔ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) ) | |
| 54 | 52 53 | bibi12d | ⊢ ( 𝑈 = ( 𝑃 ‘ 0 ) → ( ( 𝑈 ≠ ( 𝑃 ‘ 𝑁 ) ↔ 𝑈 ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) ↔ ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 𝑁 ) ↔ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) ) ) |
| 55 | 51 54 | syl5ibcom | ⊢ ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ∧ ( 𝑈 ≠ ( 𝑃 ‘ 𝑁 ) ∧ 𝑈 ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) ) → ( 𝑈 = ( 𝑃 ‘ 0 ) → ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 𝑁 ) ↔ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) ) ) |
| 56 | 55 | pm5.32rd | ⊢ ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ∧ ( 𝑈 ≠ ( 𝑃 ‘ 𝑁 ) ∧ 𝑈 ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) ) → ( ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 𝑁 ) ∧ 𝑈 = ( 𝑃 ‘ 0 ) ) ↔ ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ∧ 𝑈 = ( 𝑃 ‘ 0 ) ) ) ) |
| 57 | 49 | neneqd | ⊢ ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ∧ ( 𝑈 ≠ ( 𝑃 ‘ 𝑁 ) ∧ 𝑈 ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) ) → ¬ 𝑈 = ( 𝑃 ‘ 𝑁 ) ) |
| 58 | biorf | ⊢ ( ¬ 𝑈 = ( 𝑃 ‘ 𝑁 ) → ( 𝑈 = ( 𝑃 ‘ 0 ) ↔ ( 𝑈 = ( 𝑃 ‘ 𝑁 ) ∨ 𝑈 = ( 𝑃 ‘ 0 ) ) ) ) | |
| 59 | 57 58 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ∧ ( 𝑈 ≠ ( 𝑃 ‘ 𝑁 ) ∧ 𝑈 ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) ) → ( 𝑈 = ( 𝑃 ‘ 0 ) ↔ ( 𝑈 = ( 𝑃 ‘ 𝑁 ) ∨ 𝑈 = ( 𝑃 ‘ 0 ) ) ) ) |
| 60 | orcom | ⊢ ( ( 𝑈 = ( 𝑃 ‘ 𝑁 ) ∨ 𝑈 = ( 𝑃 ‘ 0 ) ) ↔ ( 𝑈 = ( 𝑃 ‘ 0 ) ∨ 𝑈 = ( 𝑃 ‘ 𝑁 ) ) ) | |
| 61 | 59 60 | bitrdi | ⊢ ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ∧ ( 𝑈 ≠ ( 𝑃 ‘ 𝑁 ) ∧ 𝑈 ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) ) → ( 𝑈 = ( 𝑃 ‘ 0 ) ↔ ( 𝑈 = ( 𝑃 ‘ 0 ) ∨ 𝑈 = ( 𝑃 ‘ 𝑁 ) ) ) ) |
| 62 | 61 | anbi2d | ⊢ ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ∧ ( 𝑈 ≠ ( 𝑃 ‘ 𝑁 ) ∧ 𝑈 ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) ) → ( ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 𝑁 ) ∧ 𝑈 = ( 𝑃 ‘ 0 ) ) ↔ ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 𝑁 ) ∧ ( 𝑈 = ( 𝑃 ‘ 0 ) ∨ 𝑈 = ( 𝑃 ‘ 𝑁 ) ) ) ) ) |
| 63 | 50 | neneqd | ⊢ ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ∧ ( 𝑈 ≠ ( 𝑃 ‘ 𝑁 ) ∧ 𝑈 ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) ) → ¬ 𝑈 = ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) |
| 64 | biorf | ⊢ ( ¬ 𝑈 = ( 𝑃 ‘ ( 𝑁 + 1 ) ) → ( 𝑈 = ( 𝑃 ‘ 0 ) ↔ ( 𝑈 = ( 𝑃 ‘ ( 𝑁 + 1 ) ) ∨ 𝑈 = ( 𝑃 ‘ 0 ) ) ) ) | |
| 65 | 63 64 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ∧ ( 𝑈 ≠ ( 𝑃 ‘ 𝑁 ) ∧ 𝑈 ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) ) → ( 𝑈 = ( 𝑃 ‘ 0 ) ↔ ( 𝑈 = ( 𝑃 ‘ ( 𝑁 + 1 ) ) ∨ 𝑈 = ( 𝑃 ‘ 0 ) ) ) ) |
| 66 | orcom | ⊢ ( ( 𝑈 = ( 𝑃 ‘ ( 𝑁 + 1 ) ) ∨ 𝑈 = ( 𝑃 ‘ 0 ) ) ↔ ( 𝑈 = ( 𝑃 ‘ 0 ) ∨ 𝑈 = ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) ) | |
| 67 | 65 66 | bitrdi | ⊢ ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ∧ ( 𝑈 ≠ ( 𝑃 ‘ 𝑁 ) ∧ 𝑈 ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) ) → ( 𝑈 = ( 𝑃 ‘ 0 ) ↔ ( 𝑈 = ( 𝑃 ‘ 0 ) ∨ 𝑈 = ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) ) ) |
| 68 | 67 | anbi2d | ⊢ ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ∧ ( 𝑈 ≠ ( 𝑃 ‘ 𝑁 ) ∧ 𝑈 ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) ) → ( ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ∧ 𝑈 = ( 𝑃 ‘ 0 ) ) ↔ ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ∧ ( 𝑈 = ( 𝑃 ‘ 0 ) ∨ 𝑈 = ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) ) ) ) |
| 69 | 56 62 68 | 3bitr3d | ⊢ ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ∧ ( 𝑈 ≠ ( 𝑃 ‘ 𝑁 ) ∧ 𝑈 ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) ) → ( ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 𝑁 ) ∧ ( 𝑈 = ( 𝑃 ‘ 0 ) ∨ 𝑈 = ( 𝑃 ‘ 𝑁 ) ) ) ↔ ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ∧ ( 𝑈 = ( 𝑃 ‘ 0 ) ∨ 𝑈 = ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) ) ) ) |
| 70 | eupth2lem1 | ⊢ ( 𝑈 ∈ 𝑉 → ( 𝑈 ∈ if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 𝑁 ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 𝑁 ) } ) ↔ ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 𝑁 ) ∧ ( 𝑈 = ( 𝑃 ‘ 0 ) ∨ 𝑈 = ( 𝑃 ‘ 𝑁 ) ) ) ) ) | |
| 71 | 18 70 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ∧ ( 𝑈 ≠ ( 𝑃 ‘ 𝑁 ) ∧ 𝑈 ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) ) → ( 𝑈 ∈ if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 𝑁 ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 𝑁 ) } ) ↔ ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 𝑁 ) ∧ ( 𝑈 = ( 𝑃 ‘ 0 ) ∨ 𝑈 = ( 𝑃 ‘ 𝑁 ) ) ) ) ) |
| 72 | eupth2lem1 | ⊢ ( 𝑈 ∈ 𝑉 → ( 𝑈 ∈ if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ ( 𝑁 + 1 ) ) } ) ↔ ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ∧ ( 𝑈 = ( 𝑃 ‘ 0 ) ∨ 𝑈 = ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) ) ) ) | |
| 73 | 18 72 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ∧ ( 𝑈 ≠ ( 𝑃 ‘ 𝑁 ) ∧ 𝑈 ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) ) → ( 𝑈 ∈ if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ ( 𝑁 + 1 ) ) } ) ↔ ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ∧ ( 𝑈 = ( 𝑃 ‘ 0 ) ∨ 𝑈 = ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) ) ) ) |
| 74 | 69 71 73 | 3bitr4d | ⊢ ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ∧ ( 𝑈 ≠ ( 𝑃 ‘ 𝑁 ) ∧ 𝑈 ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) ) → ( 𝑈 ∈ if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 𝑁 ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 𝑁 ) } ) ↔ 𝑈 ∈ if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ ( 𝑁 + 1 ) ) } ) ) ) |
| 75 | 40 48 74 | 3bitrd | ⊢ ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ∧ ( 𝑈 ≠ ( 𝑃 ‘ 𝑁 ) ∧ 𝑈 ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) ) → ( ¬ 2 ∥ ( ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) + ( ( VtxDeg ‘ 𝑌 ) ‘ 𝑈 ) ) ↔ 𝑈 ∈ if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ ( 𝑁 + 1 ) ) } ) ) ) |