This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The vertex degree of vertex D in a graph G with only one hyperedge E is 0 if D is not incident with the edge E . (Contributed by AV, 2-Mar-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 1hevtxdg0.i | ⊢ ( 𝜑 → ( iEdg ‘ 𝐺 ) = { 〈 𝐴 , 𝐸 〉 } ) | |
| 1hevtxdg0.v | ⊢ ( 𝜑 → ( Vtx ‘ 𝐺 ) = 𝑉 ) | ||
| 1hevtxdg0.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑋 ) | ||
| 1hevtxdg0.d | ⊢ ( 𝜑 → 𝐷 ∈ 𝑉 ) | ||
| 1hevtxdg0.e | ⊢ ( 𝜑 → 𝐸 ∈ 𝑌 ) | ||
| 1hevtxdg0.n | ⊢ ( 𝜑 → 𝐷 ∉ 𝐸 ) | ||
| Assertion | 1hevtxdg0 | ⊢ ( 𝜑 → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝐷 ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1hevtxdg0.i | ⊢ ( 𝜑 → ( iEdg ‘ 𝐺 ) = { 〈 𝐴 , 𝐸 〉 } ) | |
| 2 | 1hevtxdg0.v | ⊢ ( 𝜑 → ( Vtx ‘ 𝐺 ) = 𝑉 ) | |
| 3 | 1hevtxdg0.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑋 ) | |
| 4 | 1hevtxdg0.d | ⊢ ( 𝜑 → 𝐷 ∈ 𝑉 ) | |
| 5 | 1hevtxdg0.e | ⊢ ( 𝜑 → 𝐸 ∈ 𝑌 ) | |
| 6 | 1hevtxdg0.n | ⊢ ( 𝜑 → 𝐷 ∉ 𝐸 ) | |
| 7 | df-nel | ⊢ ( 𝐷 ∉ 𝐸 ↔ ¬ 𝐷 ∈ 𝐸 ) | |
| 8 | 6 7 | sylib | ⊢ ( 𝜑 → ¬ 𝐷 ∈ 𝐸 ) |
| 9 | 1 | fveq1d | ⊢ ( 𝜑 → ( ( iEdg ‘ 𝐺 ) ‘ 𝐴 ) = ( { 〈 𝐴 , 𝐸 〉 } ‘ 𝐴 ) ) |
| 10 | fvsng | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) → ( { 〈 𝐴 , 𝐸 〉 } ‘ 𝐴 ) = 𝐸 ) | |
| 11 | 3 5 10 | syl2anc | ⊢ ( 𝜑 → ( { 〈 𝐴 , 𝐸 〉 } ‘ 𝐴 ) = 𝐸 ) |
| 12 | 9 11 | eqtrd | ⊢ ( 𝜑 → ( ( iEdg ‘ 𝐺 ) ‘ 𝐴 ) = 𝐸 ) |
| 13 | 8 12 | neleqtrrd | ⊢ ( 𝜑 → ¬ 𝐷 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝐴 ) ) |
| 14 | fveq2 | ⊢ ( 𝑥 = 𝐴 → ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) = ( ( iEdg ‘ 𝐺 ) ‘ 𝐴 ) ) | |
| 15 | 14 | eleq2d | ⊢ ( 𝑥 = 𝐴 → ( 𝐷 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ↔ 𝐷 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝐴 ) ) ) |
| 16 | 15 | notbid | ⊢ ( 𝑥 = 𝐴 → ( ¬ 𝐷 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ↔ ¬ 𝐷 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝐴 ) ) ) |
| 17 | 16 | ralsng | ⊢ ( 𝐴 ∈ 𝑋 → ( ∀ 𝑥 ∈ { 𝐴 } ¬ 𝐷 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ↔ ¬ 𝐷 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝐴 ) ) ) |
| 18 | 3 17 | syl | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ { 𝐴 } ¬ 𝐷 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ↔ ¬ 𝐷 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝐴 ) ) ) |
| 19 | 13 18 | mpbird | ⊢ ( 𝜑 → ∀ 𝑥 ∈ { 𝐴 } ¬ 𝐷 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ) |
| 20 | 1 | dmeqd | ⊢ ( 𝜑 → dom ( iEdg ‘ 𝐺 ) = dom { 〈 𝐴 , 𝐸 〉 } ) |
| 21 | dmsnopg | ⊢ ( 𝐸 ∈ 𝑌 → dom { 〈 𝐴 , 𝐸 〉 } = { 𝐴 } ) | |
| 22 | 5 21 | syl | ⊢ ( 𝜑 → dom { 〈 𝐴 , 𝐸 〉 } = { 𝐴 } ) |
| 23 | 20 22 | eqtrd | ⊢ ( 𝜑 → dom ( iEdg ‘ 𝐺 ) = { 𝐴 } ) |
| 24 | 19 23 | raleqtrrdv | ⊢ ( 𝜑 → ∀ 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ¬ 𝐷 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ) |
| 25 | ralnex | ⊢ ( ∀ 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ¬ 𝐷 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ↔ ¬ ∃ 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) 𝐷 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ) | |
| 26 | 24 25 | sylib | ⊢ ( 𝜑 → ¬ ∃ 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) 𝐷 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ) |
| 27 | 2 | eleq2d | ⊢ ( 𝜑 → ( 𝐷 ∈ ( Vtx ‘ 𝐺 ) ↔ 𝐷 ∈ 𝑉 ) ) |
| 28 | 4 27 | mpbird | ⊢ ( 𝜑 → 𝐷 ∈ ( Vtx ‘ 𝐺 ) ) |
| 29 | eqid | ⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) | |
| 30 | eqid | ⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 ) | |
| 31 | eqid | ⊢ ( VtxDeg ‘ 𝐺 ) = ( VtxDeg ‘ 𝐺 ) | |
| 32 | 29 30 31 | vtxd0nedgb | ⊢ ( 𝐷 ∈ ( Vtx ‘ 𝐺 ) → ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝐷 ) = 0 ↔ ¬ ∃ 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) 𝐷 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ) ) |
| 33 | 28 32 | syl | ⊢ ( 𝜑 → ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝐷 ) = 0 ↔ ¬ ∃ 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) 𝐷 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ) ) |
| 34 | 26 33 | mpbird | ⊢ ( 𝜑 → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝐷 ) = 0 ) |