This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Formerly part of proof of eupth2lem3 : If an edge (not a loop) is added to a trail, the degree of vertices not being end vertices of this edge remains odd if it was odd before (regarding the subgraphs induced by the involved trails). Remark: This seems to be not valid for hyperedges joining more vertices than ( P0 ) and ( PN ) : if there is a third vertex in the edge, and this vertex is already contained in the trail, then the degree of this vertex could be affected by this edge! (Contributed by Mario Carneiro, 8-Apr-2015) (Revised by AV, 25-Feb-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | trlsegvdeg.v | |- V = ( Vtx ` G ) |
|
| trlsegvdeg.i | |- I = ( iEdg ` G ) |
||
| trlsegvdeg.f | |- ( ph -> Fun I ) |
||
| trlsegvdeg.n | |- ( ph -> N e. ( 0 ..^ ( # ` F ) ) ) |
||
| trlsegvdeg.u | |- ( ph -> U e. V ) |
||
| trlsegvdeg.w | |- ( ph -> F ( Trails ` G ) P ) |
||
| trlsegvdeg.vx | |- ( ph -> ( Vtx ` X ) = V ) |
||
| trlsegvdeg.vy | |- ( ph -> ( Vtx ` Y ) = V ) |
||
| trlsegvdeg.vz | |- ( ph -> ( Vtx ` Z ) = V ) |
||
| trlsegvdeg.ix | |- ( ph -> ( iEdg ` X ) = ( I |` ( F " ( 0 ..^ N ) ) ) ) |
||
| trlsegvdeg.iy | |- ( ph -> ( iEdg ` Y ) = { <. ( F ` N ) , ( I ` ( F ` N ) ) >. } ) |
||
| trlsegvdeg.iz | |- ( ph -> ( iEdg ` Z ) = ( I |` ( F " ( 0 ... N ) ) ) ) |
||
| eupth2lem3.o | |- ( ph -> { x e. V | -. 2 || ( ( VtxDeg ` X ) ` x ) } = if ( ( P ` 0 ) = ( P ` N ) , (/) , { ( P ` 0 ) , ( P ` N ) } ) ) |
||
| eupth2lem3.e | |- ( ph -> ( I ` ( F ` N ) ) = { ( P ` N ) , ( P ` ( N + 1 ) ) } ) |
||
| Assertion | eupth2lem3lem6 | |- ( ( ph /\ ( P ` N ) =/= ( P ` ( N + 1 ) ) /\ ( U =/= ( P ` N ) /\ U =/= ( P ` ( N + 1 ) ) ) ) -> ( -. 2 || ( ( ( VtxDeg ` X ) ` U ) + ( ( VtxDeg ` Y ) ` U ) ) <-> U e. if ( ( P ` 0 ) = ( P ` ( N + 1 ) ) , (/) , { ( P ` 0 ) , ( P ` ( N + 1 ) ) } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | trlsegvdeg.v | |- V = ( Vtx ` G ) |
|
| 2 | trlsegvdeg.i | |- I = ( iEdg ` G ) |
|
| 3 | trlsegvdeg.f | |- ( ph -> Fun I ) |
|
| 4 | trlsegvdeg.n | |- ( ph -> N e. ( 0 ..^ ( # ` F ) ) ) |
|
| 5 | trlsegvdeg.u | |- ( ph -> U e. V ) |
|
| 6 | trlsegvdeg.w | |- ( ph -> F ( Trails ` G ) P ) |
|
| 7 | trlsegvdeg.vx | |- ( ph -> ( Vtx ` X ) = V ) |
|
| 8 | trlsegvdeg.vy | |- ( ph -> ( Vtx ` Y ) = V ) |
|
| 9 | trlsegvdeg.vz | |- ( ph -> ( Vtx ` Z ) = V ) |
|
| 10 | trlsegvdeg.ix | |- ( ph -> ( iEdg ` X ) = ( I |` ( F " ( 0 ..^ N ) ) ) ) |
|
| 11 | trlsegvdeg.iy | |- ( ph -> ( iEdg ` Y ) = { <. ( F ` N ) , ( I ` ( F ` N ) ) >. } ) |
|
| 12 | trlsegvdeg.iz | |- ( ph -> ( iEdg ` Z ) = ( I |` ( F " ( 0 ... N ) ) ) ) |
|
| 13 | eupth2lem3.o | |- ( ph -> { x e. V | -. 2 || ( ( VtxDeg ` X ) ` x ) } = if ( ( P ` 0 ) = ( P ` N ) , (/) , { ( P ` 0 ) , ( P ` N ) } ) ) |
|
| 14 | eupth2lem3.e | |- ( ph -> ( I ` ( F ` N ) ) = { ( P ` N ) , ( P ` ( N + 1 ) ) } ) |
|
| 15 | 11 | 3ad2ant1 | |- ( ( ph /\ ( P ` N ) =/= ( P ` ( N + 1 ) ) /\ ( U =/= ( P ` N ) /\ U =/= ( P ` ( N + 1 ) ) ) ) -> ( iEdg ` Y ) = { <. ( F ` N ) , ( I ` ( F ` N ) ) >. } ) |
| 16 | 8 | 3ad2ant1 | |- ( ( ph /\ ( P ` N ) =/= ( P ` ( N + 1 ) ) /\ ( U =/= ( P ` N ) /\ U =/= ( P ` ( N + 1 ) ) ) ) -> ( Vtx ` Y ) = V ) |
| 17 | fvexd | |- ( ( ph /\ ( P ` N ) =/= ( P ` ( N + 1 ) ) /\ ( U =/= ( P ` N ) /\ U =/= ( P ` ( N + 1 ) ) ) ) -> ( F ` N ) e. _V ) |
|
| 18 | 5 | 3ad2ant1 | |- ( ( ph /\ ( P ` N ) =/= ( P ` ( N + 1 ) ) /\ ( U =/= ( P ` N ) /\ U =/= ( P ` ( N + 1 ) ) ) ) -> U e. V ) |
| 19 | fvexd | |- ( ( ph /\ ( P ` N ) =/= ( P ` ( N + 1 ) ) /\ ( U =/= ( P ` N ) /\ U =/= ( P ` ( N + 1 ) ) ) ) -> ( I ` ( F ` N ) ) e. _V ) |
|
| 20 | simpl | |- ( ( U =/= ( P ` N ) /\ U =/= ( P ` ( N + 1 ) ) ) -> U =/= ( P ` N ) ) |
|
| 21 | 20 | adantl | |- ( ( ( P ` N ) =/= ( P ` ( N + 1 ) ) /\ ( U =/= ( P ` N ) /\ U =/= ( P ` ( N + 1 ) ) ) ) -> U =/= ( P ` N ) ) |
| 22 | simpr | |- ( ( U =/= ( P ` N ) /\ U =/= ( P ` ( N + 1 ) ) ) -> U =/= ( P ` ( N + 1 ) ) ) |
|
| 23 | 22 | adantl | |- ( ( ( P ` N ) =/= ( P ` ( N + 1 ) ) /\ ( U =/= ( P ` N ) /\ U =/= ( P ` ( N + 1 ) ) ) ) -> U =/= ( P ` ( N + 1 ) ) ) |
| 24 | 21 23 | nelprd | |- ( ( ( P ` N ) =/= ( P ` ( N + 1 ) ) /\ ( U =/= ( P ` N ) /\ U =/= ( P ` ( N + 1 ) ) ) ) -> -. U e. { ( P ` N ) , ( P ` ( N + 1 ) ) } ) |
| 25 | df-nel | |- ( U e/ { ( P ` N ) , ( P ` ( N + 1 ) ) } <-> -. U e. { ( P ` N ) , ( P ` ( N + 1 ) ) } ) |
|
| 26 | 24 25 | sylibr | |- ( ( ( P ` N ) =/= ( P ` ( N + 1 ) ) /\ ( U =/= ( P ` N ) /\ U =/= ( P ` ( N + 1 ) ) ) ) -> U e/ { ( P ` N ) , ( P ` ( N + 1 ) ) } ) |
| 27 | neleq2 | |- ( ( I ` ( F ` N ) ) = { ( P ` N ) , ( P ` ( N + 1 ) ) } -> ( U e/ ( I ` ( F ` N ) ) <-> U e/ { ( P ` N ) , ( P ` ( N + 1 ) ) } ) ) |
|
| 28 | 26 27 | imbitrrid | |- ( ( I ` ( F ` N ) ) = { ( P ` N ) , ( P ` ( N + 1 ) ) } -> ( ( ( P ` N ) =/= ( P ` ( N + 1 ) ) /\ ( U =/= ( P ` N ) /\ U =/= ( P ` ( N + 1 ) ) ) ) -> U e/ ( I ` ( F ` N ) ) ) ) |
| 29 | 28 | expd | |- ( ( I ` ( F ` N ) ) = { ( P ` N ) , ( P ` ( N + 1 ) ) } -> ( ( P ` N ) =/= ( P ` ( N + 1 ) ) -> ( ( U =/= ( P ` N ) /\ U =/= ( P ` ( N + 1 ) ) ) -> U e/ ( I ` ( F ` N ) ) ) ) ) |
| 30 | 14 29 | syl | |- ( ph -> ( ( P ` N ) =/= ( P ` ( N + 1 ) ) -> ( ( U =/= ( P ` N ) /\ U =/= ( P ` ( N + 1 ) ) ) -> U e/ ( I ` ( F ` N ) ) ) ) ) |
| 31 | 30 | 3imp | |- ( ( ph /\ ( P ` N ) =/= ( P ` ( N + 1 ) ) /\ ( U =/= ( P ` N ) /\ U =/= ( P ` ( N + 1 ) ) ) ) -> U e/ ( I ` ( F ` N ) ) ) |
| 32 | 15 16 17 18 19 31 | 1hevtxdg0 | |- ( ( ph /\ ( P ` N ) =/= ( P ` ( N + 1 ) ) /\ ( U =/= ( P ` N ) /\ U =/= ( P ` ( N + 1 ) ) ) ) -> ( ( VtxDeg ` Y ) ` U ) = 0 ) |
| 33 | 32 | oveq2d | |- ( ( ph /\ ( P ` N ) =/= ( P ` ( N + 1 ) ) /\ ( U =/= ( P ` N ) /\ U =/= ( P ` ( N + 1 ) ) ) ) -> ( ( ( VtxDeg ` X ) ` U ) + ( ( VtxDeg ` Y ) ` U ) ) = ( ( ( VtxDeg ` X ) ` U ) + 0 ) ) |
| 34 | 1 2 3 4 5 6 7 8 9 10 11 12 | eupth2lem3lem1 | |- ( ph -> ( ( VtxDeg ` X ) ` U ) e. NN0 ) |
| 35 | 34 | nn0cnd | |- ( ph -> ( ( VtxDeg ` X ) ` U ) e. CC ) |
| 36 | 35 | addridd | |- ( ph -> ( ( ( VtxDeg ` X ) ` U ) + 0 ) = ( ( VtxDeg ` X ) ` U ) ) |
| 37 | 36 | 3ad2ant1 | |- ( ( ph /\ ( P ` N ) =/= ( P ` ( N + 1 ) ) /\ ( U =/= ( P ` N ) /\ U =/= ( P ` ( N + 1 ) ) ) ) -> ( ( ( VtxDeg ` X ) ` U ) + 0 ) = ( ( VtxDeg ` X ) ` U ) ) |
| 38 | 33 37 | eqtrd | |- ( ( ph /\ ( P ` N ) =/= ( P ` ( N + 1 ) ) /\ ( U =/= ( P ` N ) /\ U =/= ( P ` ( N + 1 ) ) ) ) -> ( ( ( VtxDeg ` X ) ` U ) + ( ( VtxDeg ` Y ) ` U ) ) = ( ( VtxDeg ` X ) ` U ) ) |
| 39 | 38 | breq2d | |- ( ( ph /\ ( P ` N ) =/= ( P ` ( N + 1 ) ) /\ ( U =/= ( P ` N ) /\ U =/= ( P ` ( N + 1 ) ) ) ) -> ( 2 || ( ( ( VtxDeg ` X ) ` U ) + ( ( VtxDeg ` Y ) ` U ) ) <-> 2 || ( ( VtxDeg ` X ) ` U ) ) ) |
| 40 | 39 | notbid | |- ( ( ph /\ ( P ` N ) =/= ( P ` ( N + 1 ) ) /\ ( U =/= ( P ` N ) /\ U =/= ( P ` ( N + 1 ) ) ) ) -> ( -. 2 || ( ( ( VtxDeg ` X ) ` U ) + ( ( VtxDeg ` Y ) ` U ) ) <-> -. 2 || ( ( VtxDeg ` X ) ` U ) ) ) |
| 41 | fveq2 | |- ( x = U -> ( ( VtxDeg ` X ) ` x ) = ( ( VtxDeg ` X ) ` U ) ) |
|
| 42 | 41 | breq2d | |- ( x = U -> ( 2 || ( ( VtxDeg ` X ) ` x ) <-> 2 || ( ( VtxDeg ` X ) ` U ) ) ) |
| 43 | 42 | notbid | |- ( x = U -> ( -. 2 || ( ( VtxDeg ` X ) ` x ) <-> -. 2 || ( ( VtxDeg ` X ) ` U ) ) ) |
| 44 | 43 | elrab3 | |- ( U e. V -> ( U e. { x e. V | -. 2 || ( ( VtxDeg ` X ) ` x ) } <-> -. 2 || ( ( VtxDeg ` X ) ` U ) ) ) |
| 45 | 5 44 | syl | |- ( ph -> ( U e. { x e. V | -. 2 || ( ( VtxDeg ` X ) ` x ) } <-> -. 2 || ( ( VtxDeg ` X ) ` U ) ) ) |
| 46 | 13 | eleq2d | |- ( ph -> ( U e. { x e. V | -. 2 || ( ( VtxDeg ` X ) ` x ) } <-> U e. if ( ( P ` 0 ) = ( P ` N ) , (/) , { ( P ` 0 ) , ( P ` N ) } ) ) ) |
| 47 | 45 46 | bitr3d | |- ( ph -> ( -. 2 || ( ( VtxDeg ` X ) ` U ) <-> U e. if ( ( P ` 0 ) = ( P ` N ) , (/) , { ( P ` 0 ) , ( P ` N ) } ) ) ) |
| 48 | 47 | 3ad2ant1 | |- ( ( ph /\ ( P ` N ) =/= ( P ` ( N + 1 ) ) /\ ( U =/= ( P ` N ) /\ U =/= ( P ` ( N + 1 ) ) ) ) -> ( -. 2 || ( ( VtxDeg ` X ) ` U ) <-> U e. if ( ( P ` 0 ) = ( P ` N ) , (/) , { ( P ` 0 ) , ( P ` N ) } ) ) ) |
| 49 | 20 | 3ad2ant3 | |- ( ( ph /\ ( P ` N ) =/= ( P ` ( N + 1 ) ) /\ ( U =/= ( P ` N ) /\ U =/= ( P ` ( N + 1 ) ) ) ) -> U =/= ( P ` N ) ) |
| 50 | 22 | 3ad2ant3 | |- ( ( ph /\ ( P ` N ) =/= ( P ` ( N + 1 ) ) /\ ( U =/= ( P ` N ) /\ U =/= ( P ` ( N + 1 ) ) ) ) -> U =/= ( P ` ( N + 1 ) ) ) |
| 51 | 49 50 | 2thd | |- ( ( ph /\ ( P ` N ) =/= ( P ` ( N + 1 ) ) /\ ( U =/= ( P ` N ) /\ U =/= ( P ` ( N + 1 ) ) ) ) -> ( U =/= ( P ` N ) <-> U =/= ( P ` ( N + 1 ) ) ) ) |
| 52 | neeq1 | |- ( U = ( P ` 0 ) -> ( U =/= ( P ` N ) <-> ( P ` 0 ) =/= ( P ` N ) ) ) |
|
| 53 | neeq1 | |- ( U = ( P ` 0 ) -> ( U =/= ( P ` ( N + 1 ) ) <-> ( P ` 0 ) =/= ( P ` ( N + 1 ) ) ) ) |
|
| 54 | 52 53 | bibi12d | |- ( U = ( P ` 0 ) -> ( ( U =/= ( P ` N ) <-> U =/= ( P ` ( N + 1 ) ) ) <-> ( ( P ` 0 ) =/= ( P ` N ) <-> ( P ` 0 ) =/= ( P ` ( N + 1 ) ) ) ) ) |
| 55 | 51 54 | syl5ibcom | |- ( ( ph /\ ( P ` N ) =/= ( P ` ( N + 1 ) ) /\ ( U =/= ( P ` N ) /\ U =/= ( P ` ( N + 1 ) ) ) ) -> ( U = ( P ` 0 ) -> ( ( P ` 0 ) =/= ( P ` N ) <-> ( P ` 0 ) =/= ( P ` ( N + 1 ) ) ) ) ) |
| 56 | 55 | pm5.32rd | |- ( ( ph /\ ( P ` N ) =/= ( P ` ( N + 1 ) ) /\ ( U =/= ( P ` N ) /\ U =/= ( P ` ( N + 1 ) ) ) ) -> ( ( ( P ` 0 ) =/= ( P ` N ) /\ U = ( P ` 0 ) ) <-> ( ( P ` 0 ) =/= ( P ` ( N + 1 ) ) /\ U = ( P ` 0 ) ) ) ) |
| 57 | 49 | neneqd | |- ( ( ph /\ ( P ` N ) =/= ( P ` ( N + 1 ) ) /\ ( U =/= ( P ` N ) /\ U =/= ( P ` ( N + 1 ) ) ) ) -> -. U = ( P ` N ) ) |
| 58 | biorf | |- ( -. U = ( P ` N ) -> ( U = ( P ` 0 ) <-> ( U = ( P ` N ) \/ U = ( P ` 0 ) ) ) ) |
|
| 59 | 57 58 | syl | |- ( ( ph /\ ( P ` N ) =/= ( P ` ( N + 1 ) ) /\ ( U =/= ( P ` N ) /\ U =/= ( P ` ( N + 1 ) ) ) ) -> ( U = ( P ` 0 ) <-> ( U = ( P ` N ) \/ U = ( P ` 0 ) ) ) ) |
| 60 | orcom | |- ( ( U = ( P ` N ) \/ U = ( P ` 0 ) ) <-> ( U = ( P ` 0 ) \/ U = ( P ` N ) ) ) |
|
| 61 | 59 60 | bitrdi | |- ( ( ph /\ ( P ` N ) =/= ( P ` ( N + 1 ) ) /\ ( U =/= ( P ` N ) /\ U =/= ( P ` ( N + 1 ) ) ) ) -> ( U = ( P ` 0 ) <-> ( U = ( P ` 0 ) \/ U = ( P ` N ) ) ) ) |
| 62 | 61 | anbi2d | |- ( ( ph /\ ( P ` N ) =/= ( P ` ( N + 1 ) ) /\ ( U =/= ( P ` N ) /\ U =/= ( P ` ( N + 1 ) ) ) ) -> ( ( ( P ` 0 ) =/= ( P ` N ) /\ U = ( P ` 0 ) ) <-> ( ( P ` 0 ) =/= ( P ` N ) /\ ( U = ( P ` 0 ) \/ U = ( P ` N ) ) ) ) ) |
| 63 | 50 | neneqd | |- ( ( ph /\ ( P ` N ) =/= ( P ` ( N + 1 ) ) /\ ( U =/= ( P ` N ) /\ U =/= ( P ` ( N + 1 ) ) ) ) -> -. U = ( P ` ( N + 1 ) ) ) |
| 64 | biorf | |- ( -. U = ( P ` ( N + 1 ) ) -> ( U = ( P ` 0 ) <-> ( U = ( P ` ( N + 1 ) ) \/ U = ( P ` 0 ) ) ) ) |
|
| 65 | 63 64 | syl | |- ( ( ph /\ ( P ` N ) =/= ( P ` ( N + 1 ) ) /\ ( U =/= ( P ` N ) /\ U =/= ( P ` ( N + 1 ) ) ) ) -> ( U = ( P ` 0 ) <-> ( U = ( P ` ( N + 1 ) ) \/ U = ( P ` 0 ) ) ) ) |
| 66 | orcom | |- ( ( U = ( P ` ( N + 1 ) ) \/ U = ( P ` 0 ) ) <-> ( U = ( P ` 0 ) \/ U = ( P ` ( N + 1 ) ) ) ) |
|
| 67 | 65 66 | bitrdi | |- ( ( ph /\ ( P ` N ) =/= ( P ` ( N + 1 ) ) /\ ( U =/= ( P ` N ) /\ U =/= ( P ` ( N + 1 ) ) ) ) -> ( U = ( P ` 0 ) <-> ( U = ( P ` 0 ) \/ U = ( P ` ( N + 1 ) ) ) ) ) |
| 68 | 67 | anbi2d | |- ( ( ph /\ ( P ` N ) =/= ( P ` ( N + 1 ) ) /\ ( U =/= ( P ` N ) /\ U =/= ( P ` ( N + 1 ) ) ) ) -> ( ( ( P ` 0 ) =/= ( P ` ( N + 1 ) ) /\ U = ( P ` 0 ) ) <-> ( ( P ` 0 ) =/= ( P ` ( N + 1 ) ) /\ ( U = ( P ` 0 ) \/ U = ( P ` ( N + 1 ) ) ) ) ) ) |
| 69 | 56 62 68 | 3bitr3d | |- ( ( ph /\ ( P ` N ) =/= ( P ` ( N + 1 ) ) /\ ( U =/= ( P ` N ) /\ U =/= ( P ` ( N + 1 ) ) ) ) -> ( ( ( P ` 0 ) =/= ( P ` N ) /\ ( U = ( P ` 0 ) \/ U = ( P ` N ) ) ) <-> ( ( P ` 0 ) =/= ( P ` ( N + 1 ) ) /\ ( U = ( P ` 0 ) \/ U = ( P ` ( N + 1 ) ) ) ) ) ) |
| 70 | eupth2lem1 | |- ( U e. V -> ( U e. if ( ( P ` 0 ) = ( P ` N ) , (/) , { ( P ` 0 ) , ( P ` N ) } ) <-> ( ( P ` 0 ) =/= ( P ` N ) /\ ( U = ( P ` 0 ) \/ U = ( P ` N ) ) ) ) ) |
|
| 71 | 18 70 | syl | |- ( ( ph /\ ( P ` N ) =/= ( P ` ( N + 1 ) ) /\ ( U =/= ( P ` N ) /\ U =/= ( P ` ( N + 1 ) ) ) ) -> ( U e. if ( ( P ` 0 ) = ( P ` N ) , (/) , { ( P ` 0 ) , ( P ` N ) } ) <-> ( ( P ` 0 ) =/= ( P ` N ) /\ ( U = ( P ` 0 ) \/ U = ( P ` N ) ) ) ) ) |
| 72 | eupth2lem1 | |- ( U e. V -> ( U e. if ( ( P ` 0 ) = ( P ` ( N + 1 ) ) , (/) , { ( P ` 0 ) , ( P ` ( N + 1 ) ) } ) <-> ( ( P ` 0 ) =/= ( P ` ( N + 1 ) ) /\ ( U = ( P ` 0 ) \/ U = ( P ` ( N + 1 ) ) ) ) ) ) |
|
| 73 | 18 72 | syl | |- ( ( ph /\ ( P ` N ) =/= ( P ` ( N + 1 ) ) /\ ( U =/= ( P ` N ) /\ U =/= ( P ` ( N + 1 ) ) ) ) -> ( U e. if ( ( P ` 0 ) = ( P ` ( N + 1 ) ) , (/) , { ( P ` 0 ) , ( P ` ( N + 1 ) ) } ) <-> ( ( P ` 0 ) =/= ( P ` ( N + 1 ) ) /\ ( U = ( P ` 0 ) \/ U = ( P ` ( N + 1 ) ) ) ) ) ) |
| 74 | 69 71 73 | 3bitr4d | |- ( ( ph /\ ( P ` N ) =/= ( P ` ( N + 1 ) ) /\ ( U =/= ( P ` N ) /\ U =/= ( P ` ( N + 1 ) ) ) ) -> ( U e. if ( ( P ` 0 ) = ( P ` N ) , (/) , { ( P ` 0 ) , ( P ` N ) } ) <-> U e. if ( ( P ` 0 ) = ( P ` ( N + 1 ) ) , (/) , { ( P ` 0 ) , ( P ` ( N + 1 ) ) } ) ) ) |
| 75 | 40 48 74 | 3bitrd | |- ( ( ph /\ ( P ` N ) =/= ( P ` ( N + 1 ) ) /\ ( U =/= ( P ` N ) /\ U =/= ( P ` ( N + 1 ) ) ) ) -> ( -. 2 || ( ( ( VtxDeg ` X ) ` U ) + ( ( VtxDeg ` Y ) ` U ) ) <-> U e. if ( ( P ` 0 ) = ( P ` ( N + 1 ) ) , (/) , { ( P ` 0 ) , ( P ` ( N + 1 ) ) } ) ) ) |