This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for eupth2lem3 , formerly part of proof of eupth2lem3 : If a loop { ( PN ) , ( P( N + 1 ) ) } is added to a trail, the degree of the vertices with odd degree remains odd (regarding the subgraphs induced by the involved trails). (Contributed by Mario Carneiro, 8-Apr-2015) (Revised by AV, 21-Feb-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | trlsegvdeg.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| trlsegvdeg.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | ||
| trlsegvdeg.f | ⊢ ( 𝜑 → Fun 𝐼 ) | ||
| trlsegvdeg.n | ⊢ ( 𝜑 → 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) | ||
| trlsegvdeg.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) | ||
| trlsegvdeg.w | ⊢ ( 𝜑 → 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ) | ||
| trlsegvdeg.vx | ⊢ ( 𝜑 → ( Vtx ‘ 𝑋 ) = 𝑉 ) | ||
| trlsegvdeg.vy | ⊢ ( 𝜑 → ( Vtx ‘ 𝑌 ) = 𝑉 ) | ||
| trlsegvdeg.vz | ⊢ ( 𝜑 → ( Vtx ‘ 𝑍 ) = 𝑉 ) | ||
| trlsegvdeg.ix | ⊢ ( 𝜑 → ( iEdg ‘ 𝑋 ) = ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ) ) | ||
| trlsegvdeg.iy | ⊢ ( 𝜑 → ( iEdg ‘ 𝑌 ) = { 〈 ( 𝐹 ‘ 𝑁 ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) 〉 } ) | ||
| trlsegvdeg.iz | ⊢ ( 𝜑 → ( iEdg ‘ 𝑍 ) = ( 𝐼 ↾ ( 𝐹 “ ( 0 ... 𝑁 ) ) ) ) | ||
| eupth2lem3.o | ⊢ ( 𝜑 → { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑥 ) } = if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 𝑁 ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 𝑁 ) } ) ) | ||
| eupth2lem3lem3.e | ⊢ ( 𝜑 → if- ( ( 𝑃 ‘ 𝑁 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) = { ( 𝑃 ‘ 𝑁 ) } , { ( 𝑃 ‘ 𝑁 ) , ( 𝑃 ‘ ( 𝑁 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) ) ) | ||
| Assertion | eupth2lem3lem3 | ⊢ ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) → ( ¬ 2 ∥ ( ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) + ( ( VtxDeg ‘ 𝑌 ) ‘ 𝑈 ) ) ↔ 𝑈 ∈ if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ ( 𝑁 + 1 ) ) } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | trlsegvdeg.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | trlsegvdeg.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | |
| 3 | trlsegvdeg.f | ⊢ ( 𝜑 → Fun 𝐼 ) | |
| 4 | trlsegvdeg.n | ⊢ ( 𝜑 → 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) | |
| 5 | trlsegvdeg.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) | |
| 6 | trlsegvdeg.w | ⊢ ( 𝜑 → 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ) | |
| 7 | trlsegvdeg.vx | ⊢ ( 𝜑 → ( Vtx ‘ 𝑋 ) = 𝑉 ) | |
| 8 | trlsegvdeg.vy | ⊢ ( 𝜑 → ( Vtx ‘ 𝑌 ) = 𝑉 ) | |
| 9 | trlsegvdeg.vz | ⊢ ( 𝜑 → ( Vtx ‘ 𝑍 ) = 𝑉 ) | |
| 10 | trlsegvdeg.ix | ⊢ ( 𝜑 → ( iEdg ‘ 𝑋 ) = ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ) ) | |
| 11 | trlsegvdeg.iy | ⊢ ( 𝜑 → ( iEdg ‘ 𝑌 ) = { 〈 ( 𝐹 ‘ 𝑁 ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) 〉 } ) | |
| 12 | trlsegvdeg.iz | ⊢ ( 𝜑 → ( iEdg ‘ 𝑍 ) = ( 𝐼 ↾ ( 𝐹 “ ( 0 ... 𝑁 ) ) ) ) | |
| 13 | eupth2lem3.o | ⊢ ( 𝜑 → { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑥 ) } = if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 𝑁 ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 𝑁 ) } ) ) | |
| 14 | eupth2lem3lem3.e | ⊢ ( 𝜑 → if- ( ( 𝑃 ‘ 𝑁 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) = { ( 𝑃 ‘ 𝑁 ) } , { ( 𝑃 ‘ 𝑁 ) , ( 𝑃 ‘ ( 𝑁 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) ) ) | |
| 15 | fveq2 | ⊢ ( 𝑥 = 𝑈 → ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑥 ) = ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) ) | |
| 16 | 15 | breq2d | ⊢ ( 𝑥 = 𝑈 → ( 2 ∥ ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑥 ) ↔ 2 ∥ ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) ) ) |
| 17 | 16 | notbid | ⊢ ( 𝑥 = 𝑈 → ( ¬ 2 ∥ ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑥 ) ↔ ¬ 2 ∥ ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) ) ) |
| 18 | 17 | elrab3 | ⊢ ( 𝑈 ∈ 𝑉 → ( 𝑈 ∈ { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑥 ) } ↔ ¬ 2 ∥ ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) ) ) |
| 19 | 5 18 | syl | ⊢ ( 𝜑 → ( 𝑈 ∈ { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑥 ) } ↔ ¬ 2 ∥ ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) ) ) |
| 20 | 13 | eleq2d | ⊢ ( 𝜑 → ( 𝑈 ∈ { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑥 ) } ↔ 𝑈 ∈ if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 𝑁 ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 𝑁 ) } ) ) ) |
| 21 | 19 20 | bitr3d | ⊢ ( 𝜑 → ( ¬ 2 ∥ ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) ↔ 𝑈 ∈ if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 𝑁 ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 𝑁 ) } ) ) ) |
| 22 | 21 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) → ( ¬ 2 ∥ ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) ↔ 𝑈 ∈ if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 𝑁 ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 𝑁 ) } ) ) ) |
| 23 | 2z | ⊢ 2 ∈ ℤ | |
| 24 | 23 | a1i | ⊢ ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) → 2 ∈ ℤ ) |
| 25 | 1 2 3 4 5 6 7 8 9 10 11 12 | eupth2lem3lem1 | ⊢ ( 𝜑 → ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) ∈ ℕ0 ) |
| 26 | 25 | nn0zd | ⊢ ( 𝜑 → ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) ∈ ℤ ) |
| 27 | 26 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) → ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) ∈ ℤ ) |
| 28 | 1 2 3 4 5 6 7 8 9 10 11 12 | eupth2lem3lem2 | ⊢ ( 𝜑 → ( ( VtxDeg ‘ 𝑌 ) ‘ 𝑈 ) ∈ ℕ0 ) |
| 29 | 28 | nn0zd | ⊢ ( 𝜑 → ( ( VtxDeg ‘ 𝑌 ) ‘ 𝑈 ) ∈ ℤ ) |
| 30 | 29 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) → ( ( VtxDeg ‘ 𝑌 ) ‘ 𝑈 ) ∈ ℤ ) |
| 31 | z2even | ⊢ 2 ∥ 2 | |
| 32 | 8 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) ∧ 𝑈 = ( 𝑃 ‘ 𝑁 ) ) → ( Vtx ‘ 𝑌 ) = 𝑉 ) |
| 33 | fvexd | ⊢ ( ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) ∧ 𝑈 = ( 𝑃 ‘ 𝑁 ) ) → ( 𝐹 ‘ 𝑁 ) ∈ V ) | |
| 34 | 5 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) ∧ 𝑈 = ( 𝑃 ‘ 𝑁 ) ) → 𝑈 ∈ 𝑉 ) |
| 35 | 11 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) ∧ 𝑈 = ( 𝑃 ‘ 𝑁 ) ) → ( iEdg ‘ 𝑌 ) = { 〈 ( 𝐹 ‘ 𝑁 ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) 〉 } ) |
| 36 | 14 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) → if- ( ( 𝑃 ‘ 𝑁 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) = { ( 𝑃 ‘ 𝑁 ) } , { ( 𝑃 ‘ 𝑁 ) , ( 𝑃 ‘ ( 𝑁 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) ) ) |
| 37 | ifptru | ⊢ ( ( 𝑃 ‘ 𝑁 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) → ( if- ( ( 𝑃 ‘ 𝑁 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) = { ( 𝑃 ‘ 𝑁 ) } , { ( 𝑃 ‘ 𝑁 ) , ( 𝑃 ‘ ( 𝑁 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) ) ↔ ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) = { ( 𝑃 ‘ 𝑁 ) } ) ) | |
| 38 | 37 | adantl | ⊢ ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) → ( if- ( ( 𝑃 ‘ 𝑁 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) = { ( 𝑃 ‘ 𝑁 ) } , { ( 𝑃 ‘ 𝑁 ) , ( 𝑃 ‘ ( 𝑁 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) ) ↔ ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) = { ( 𝑃 ‘ 𝑁 ) } ) ) |
| 39 | 36 38 | mpbid | ⊢ ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) → ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) = { ( 𝑃 ‘ 𝑁 ) } ) |
| 40 | sneq | ⊢ ( ( 𝑃 ‘ 𝑁 ) = 𝑈 → { ( 𝑃 ‘ 𝑁 ) } = { 𝑈 } ) | |
| 41 | 40 | eqcoms | ⊢ ( 𝑈 = ( 𝑃 ‘ 𝑁 ) → { ( 𝑃 ‘ 𝑁 ) } = { 𝑈 } ) |
| 42 | 39 41 | sylan9eq | ⊢ ( ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) ∧ 𝑈 = ( 𝑃 ‘ 𝑁 ) ) → ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) = { 𝑈 } ) |
| 43 | 42 | opeq2d | ⊢ ( ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) ∧ 𝑈 = ( 𝑃 ‘ 𝑁 ) ) → 〈 ( 𝐹 ‘ 𝑁 ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) 〉 = 〈 ( 𝐹 ‘ 𝑁 ) , { 𝑈 } 〉 ) |
| 44 | 43 | sneqd | ⊢ ( ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) ∧ 𝑈 = ( 𝑃 ‘ 𝑁 ) ) → { 〈 ( 𝐹 ‘ 𝑁 ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) 〉 } = { 〈 ( 𝐹 ‘ 𝑁 ) , { 𝑈 } 〉 } ) |
| 45 | 35 44 | eqtrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) ∧ 𝑈 = ( 𝑃 ‘ 𝑁 ) ) → ( iEdg ‘ 𝑌 ) = { 〈 ( 𝐹 ‘ 𝑁 ) , { 𝑈 } 〉 } ) |
| 46 | 32 33 34 45 | 1loopgrvd2 | ⊢ ( ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) ∧ 𝑈 = ( 𝑃 ‘ 𝑁 ) ) → ( ( VtxDeg ‘ 𝑌 ) ‘ 𝑈 ) = 2 ) |
| 47 | 31 46 | breqtrrid | ⊢ ( ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) ∧ 𝑈 = ( 𝑃 ‘ 𝑁 ) ) → 2 ∥ ( ( VtxDeg ‘ 𝑌 ) ‘ 𝑈 ) ) |
| 48 | z0even | ⊢ 2 ∥ 0 | |
| 49 | 8 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) ∧ 𝑈 ≠ ( 𝑃 ‘ 𝑁 ) ) → ( Vtx ‘ 𝑌 ) = 𝑉 ) |
| 50 | fvexd | ⊢ ( ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) ∧ 𝑈 ≠ ( 𝑃 ‘ 𝑁 ) ) → ( 𝐹 ‘ 𝑁 ) ∈ V ) | |
| 51 | 1 2 3 4 5 6 | trlsegvdeglem1 | ⊢ ( 𝜑 → ( ( 𝑃 ‘ 𝑁 ) ∈ 𝑉 ∧ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ∈ 𝑉 ) ) |
| 52 | 51 | simpld | ⊢ ( 𝜑 → ( 𝑃 ‘ 𝑁 ) ∈ 𝑉 ) |
| 53 | 52 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) ∧ 𝑈 ≠ ( 𝑃 ‘ 𝑁 ) ) → ( 𝑃 ‘ 𝑁 ) ∈ 𝑉 ) |
| 54 | 11 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) → ( iEdg ‘ 𝑌 ) = { 〈 ( 𝐹 ‘ 𝑁 ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) 〉 } ) |
| 55 | 39 | opeq2d | ⊢ ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) → 〈 ( 𝐹 ‘ 𝑁 ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) 〉 = 〈 ( 𝐹 ‘ 𝑁 ) , { ( 𝑃 ‘ 𝑁 ) } 〉 ) |
| 56 | 55 | sneqd | ⊢ ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) → { 〈 ( 𝐹 ‘ 𝑁 ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) 〉 } = { 〈 ( 𝐹 ‘ 𝑁 ) , { ( 𝑃 ‘ 𝑁 ) } 〉 } ) |
| 57 | 54 56 | eqtrd | ⊢ ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) → ( iEdg ‘ 𝑌 ) = { 〈 ( 𝐹 ‘ 𝑁 ) , { ( 𝑃 ‘ 𝑁 ) } 〉 } ) |
| 58 | 57 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) ∧ 𝑈 ≠ ( 𝑃 ‘ 𝑁 ) ) → ( iEdg ‘ 𝑌 ) = { 〈 ( 𝐹 ‘ 𝑁 ) , { ( 𝑃 ‘ 𝑁 ) } 〉 } ) |
| 59 | 5 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) → 𝑈 ∈ 𝑉 ) |
| 60 | 59 | anim1i | ⊢ ( ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) ∧ 𝑈 ≠ ( 𝑃 ‘ 𝑁 ) ) → ( 𝑈 ∈ 𝑉 ∧ 𝑈 ≠ ( 𝑃 ‘ 𝑁 ) ) ) |
| 61 | eldifsn | ⊢ ( 𝑈 ∈ ( 𝑉 ∖ { ( 𝑃 ‘ 𝑁 ) } ) ↔ ( 𝑈 ∈ 𝑉 ∧ 𝑈 ≠ ( 𝑃 ‘ 𝑁 ) ) ) | |
| 62 | 60 61 | sylibr | ⊢ ( ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) ∧ 𝑈 ≠ ( 𝑃 ‘ 𝑁 ) ) → 𝑈 ∈ ( 𝑉 ∖ { ( 𝑃 ‘ 𝑁 ) } ) ) |
| 63 | 49 50 53 58 62 | 1loopgrvd0 | ⊢ ( ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) ∧ 𝑈 ≠ ( 𝑃 ‘ 𝑁 ) ) → ( ( VtxDeg ‘ 𝑌 ) ‘ 𝑈 ) = 0 ) |
| 64 | 48 63 | breqtrrid | ⊢ ( ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) ∧ 𝑈 ≠ ( 𝑃 ‘ 𝑁 ) ) → 2 ∥ ( ( VtxDeg ‘ 𝑌 ) ‘ 𝑈 ) ) |
| 65 | 47 64 | pm2.61dane | ⊢ ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) → 2 ∥ ( ( VtxDeg ‘ 𝑌 ) ‘ 𝑈 ) ) |
| 66 | dvdsadd2b | ⊢ ( ( 2 ∈ ℤ ∧ ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) ∈ ℤ ∧ ( ( ( VtxDeg ‘ 𝑌 ) ‘ 𝑈 ) ∈ ℤ ∧ 2 ∥ ( ( VtxDeg ‘ 𝑌 ) ‘ 𝑈 ) ) ) → ( 2 ∥ ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) ↔ 2 ∥ ( ( ( VtxDeg ‘ 𝑌 ) ‘ 𝑈 ) + ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) ) ) ) | |
| 67 | 24 27 30 65 66 | syl112anc | ⊢ ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) → ( 2 ∥ ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) ↔ 2 ∥ ( ( ( VtxDeg ‘ 𝑌 ) ‘ 𝑈 ) + ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) ) ) ) |
| 68 | 28 | nn0cnd | ⊢ ( 𝜑 → ( ( VtxDeg ‘ 𝑌 ) ‘ 𝑈 ) ∈ ℂ ) |
| 69 | 25 | nn0cnd | ⊢ ( 𝜑 → ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) ∈ ℂ ) |
| 70 | 68 69 | addcomd | ⊢ ( 𝜑 → ( ( ( VtxDeg ‘ 𝑌 ) ‘ 𝑈 ) + ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) ) = ( ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) + ( ( VtxDeg ‘ 𝑌 ) ‘ 𝑈 ) ) ) |
| 71 | 70 | breq2d | ⊢ ( 𝜑 → ( 2 ∥ ( ( ( VtxDeg ‘ 𝑌 ) ‘ 𝑈 ) + ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) ) ↔ 2 ∥ ( ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) + ( ( VtxDeg ‘ 𝑌 ) ‘ 𝑈 ) ) ) ) |
| 72 | 71 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) → ( 2 ∥ ( ( ( VtxDeg ‘ 𝑌 ) ‘ 𝑈 ) + ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) ) ↔ 2 ∥ ( ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) + ( ( VtxDeg ‘ 𝑌 ) ‘ 𝑈 ) ) ) ) |
| 73 | 67 72 | bitrd | ⊢ ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) → ( 2 ∥ ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) ↔ 2 ∥ ( ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) + ( ( VtxDeg ‘ 𝑌 ) ‘ 𝑈 ) ) ) ) |
| 74 | 73 | notbid | ⊢ ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) → ( ¬ 2 ∥ ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) ↔ ¬ 2 ∥ ( ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) + ( ( VtxDeg ‘ 𝑌 ) ‘ 𝑈 ) ) ) ) |
| 75 | simpr | ⊢ ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) → ( 𝑃 ‘ 𝑁 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) | |
| 76 | 75 | eqeq2d | ⊢ ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) → ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 𝑁 ) ↔ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) ) |
| 77 | 75 | preq2d | ⊢ ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) → { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 𝑁 ) } = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ ( 𝑁 + 1 ) ) } ) |
| 78 | 76 77 | ifbieq2d | ⊢ ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) → if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 𝑁 ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 𝑁 ) } ) = if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ ( 𝑁 + 1 ) ) } ) ) |
| 79 | 78 | eleq2d | ⊢ ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) → ( 𝑈 ∈ if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 𝑁 ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 𝑁 ) } ) ↔ 𝑈 ∈ if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ ( 𝑁 + 1 ) ) } ) ) ) |
| 80 | 22 74 79 | 3bitr3d | ⊢ ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) → ( ¬ 2 ∥ ( ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) + ( ( VtxDeg ‘ 𝑌 ) ‘ 𝑈 ) ) ↔ 𝑈 ∈ if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ ( 𝑁 + 1 ) ) } ) ) ) |