This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for eupth2 . (Contributed by Mario Carneiro, 8-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eupth2lem1 | |- ( U e. V -> ( U e. if ( A = B , (/) , { A , B } ) <-> ( A =/= B /\ ( U = A \/ U = B ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq2 | |- ( (/) = if ( A = B , (/) , { A , B } ) -> ( U e. (/) <-> U e. if ( A = B , (/) , { A , B } ) ) ) |
|
| 2 | 1 | bibi1d | |- ( (/) = if ( A = B , (/) , { A , B } ) -> ( ( U e. (/) <-> ( A =/= B /\ ( U = A \/ U = B ) ) ) <-> ( U e. if ( A = B , (/) , { A , B } ) <-> ( A =/= B /\ ( U = A \/ U = B ) ) ) ) ) |
| 3 | eleq2 | |- ( { A , B } = if ( A = B , (/) , { A , B } ) -> ( U e. { A , B } <-> U e. if ( A = B , (/) , { A , B } ) ) ) |
|
| 4 | 3 | bibi1d | |- ( { A , B } = if ( A = B , (/) , { A , B } ) -> ( ( U e. { A , B } <-> ( A =/= B /\ ( U = A \/ U = B ) ) ) <-> ( U e. if ( A = B , (/) , { A , B } ) <-> ( A =/= B /\ ( U = A \/ U = B ) ) ) ) ) |
| 5 | noel | |- -. U e. (/) |
|
| 6 | 5 | a1i | |- ( ( U e. V /\ A = B ) -> -. U e. (/) ) |
| 7 | simpl | |- ( ( A =/= B /\ ( U = A \/ U = B ) ) -> A =/= B ) |
|
| 8 | 7 | neneqd | |- ( ( A =/= B /\ ( U = A \/ U = B ) ) -> -. A = B ) |
| 9 | simpr | |- ( ( U e. V /\ A = B ) -> A = B ) |
|
| 10 | 8 9 | nsyl3 | |- ( ( U e. V /\ A = B ) -> -. ( A =/= B /\ ( U = A \/ U = B ) ) ) |
| 11 | 6 10 | 2falsed | |- ( ( U e. V /\ A = B ) -> ( U e. (/) <-> ( A =/= B /\ ( U = A \/ U = B ) ) ) ) |
| 12 | elprg | |- ( U e. V -> ( U e. { A , B } <-> ( U = A \/ U = B ) ) ) |
|
| 13 | df-ne | |- ( A =/= B <-> -. A = B ) |
|
| 14 | ibar | |- ( A =/= B -> ( ( U = A \/ U = B ) <-> ( A =/= B /\ ( U = A \/ U = B ) ) ) ) |
|
| 15 | 13 14 | sylbir | |- ( -. A = B -> ( ( U = A \/ U = B ) <-> ( A =/= B /\ ( U = A \/ U = B ) ) ) ) |
| 16 | 12 15 | sylan9bb | |- ( ( U e. V /\ -. A = B ) -> ( U e. { A , B } <-> ( A =/= B /\ ( U = A \/ U = B ) ) ) ) |
| 17 | 2 4 11 16 | ifbothda | |- ( U e. V -> ( U e. if ( A = B , (/) , { A , B } ) <-> ( A =/= B /\ ( U = A \/ U = B ) ) ) ) |