This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A graph with an Eulerian path has either zero or two vertices of odd degree. (Contributed by Mario Carneiro, 7-Apr-2015) (Revised by AV, 26-Feb-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | eulerpathpr.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| Assertion | eulerpathpr | ⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝐹 ( EulerPaths ‘ 𝐺 ) 𝑃 ) → ( ♯ ‘ { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) } ) ∈ { 0 , 2 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eulerpathpr.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | eqid | ⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 ) | |
| 3 | simpl | ⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝐹 ( EulerPaths ‘ 𝐺 ) 𝑃 ) → 𝐺 ∈ UPGraph ) | |
| 4 | upgruhgr | ⊢ ( 𝐺 ∈ UPGraph → 𝐺 ∈ UHGraph ) | |
| 5 | 2 | uhgrfun | ⊢ ( 𝐺 ∈ UHGraph → Fun ( iEdg ‘ 𝐺 ) ) |
| 6 | 4 5 | syl | ⊢ ( 𝐺 ∈ UPGraph → Fun ( iEdg ‘ 𝐺 ) ) |
| 7 | 6 | adantr | ⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝐹 ( EulerPaths ‘ 𝐺 ) 𝑃 ) → Fun ( iEdg ‘ 𝐺 ) ) |
| 8 | simpr | ⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝐹 ( EulerPaths ‘ 𝐺 ) 𝑃 ) → 𝐹 ( EulerPaths ‘ 𝐺 ) 𝑃 ) | |
| 9 | 1 2 3 7 8 | eupth2 | ⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝐹 ( EulerPaths ‘ 𝐺 ) 𝑃 ) → { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) } = if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) } ) ) |
| 10 | 9 | fveq2d | ⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝐹 ( EulerPaths ‘ 𝐺 ) 𝑃 ) → ( ♯ ‘ { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) } ) = ( ♯ ‘ if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) } ) ) ) |
| 11 | fveq2 | ⊢ ( ∅ = if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) } ) → ( ♯ ‘ ∅ ) = ( ♯ ‘ if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) } ) ) ) | |
| 12 | 11 | eleq1d | ⊢ ( ∅ = if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) } ) → ( ( ♯ ‘ ∅ ) ∈ { 0 , 2 } ↔ ( ♯ ‘ if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) } ) ) ∈ { 0 , 2 } ) ) |
| 13 | fveq2 | ⊢ ( { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) } = if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) } ) → ( ♯ ‘ { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) } ) = ( ♯ ‘ if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) } ) ) ) | |
| 14 | 13 | eleq1d | ⊢ ( { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) } = if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) } ) → ( ( ♯ ‘ { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) } ) ∈ { 0 , 2 } ↔ ( ♯ ‘ if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) } ) ) ∈ { 0 , 2 } ) ) |
| 15 | hash0 | ⊢ ( ♯ ‘ ∅ ) = 0 | |
| 16 | c0ex | ⊢ 0 ∈ V | |
| 17 | 16 | prid1 | ⊢ 0 ∈ { 0 , 2 } |
| 18 | 15 17 | eqeltri | ⊢ ( ♯ ‘ ∅ ) ∈ { 0 , 2 } |
| 19 | 18 | a1i | ⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝐹 ( EulerPaths ‘ 𝐺 ) 𝑃 ) ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) → ( ♯ ‘ ∅ ) ∈ { 0 , 2 } ) |
| 20 | simpr | ⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝐹 ( EulerPaths ‘ 𝐺 ) 𝑃 ) ∧ ¬ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) → ¬ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) | |
| 21 | 20 | neqned | ⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝐹 ( EulerPaths ‘ 𝐺 ) 𝑃 ) ∧ ¬ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) → ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) |
| 22 | fvex | ⊢ ( 𝑃 ‘ 0 ) ∈ V | |
| 23 | fvex | ⊢ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∈ V | |
| 24 | hashprg | ⊢ ( ( ( 𝑃 ‘ 0 ) ∈ V ∧ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∈ V ) → ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ↔ ( ♯ ‘ { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) } ) = 2 ) ) | |
| 25 | 22 23 24 | mp2an | ⊢ ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ↔ ( ♯ ‘ { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) } ) = 2 ) |
| 26 | 21 25 | sylib | ⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝐹 ( EulerPaths ‘ 𝐺 ) 𝑃 ) ∧ ¬ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) → ( ♯ ‘ { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) } ) = 2 ) |
| 27 | 2ex | ⊢ 2 ∈ V | |
| 28 | 27 | prid2 | ⊢ 2 ∈ { 0 , 2 } |
| 29 | 26 28 | eqeltrdi | ⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝐹 ( EulerPaths ‘ 𝐺 ) 𝑃 ) ∧ ¬ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) → ( ♯ ‘ { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) } ) ∈ { 0 , 2 } ) |
| 30 | 12 14 19 29 | ifbothda | ⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝐹 ( EulerPaths ‘ 𝐺 ) 𝑃 ) → ( ♯ ‘ if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) } ) ) ∈ { 0 , 2 } ) |
| 31 | 10 30 | eqeltrd | ⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝐹 ( EulerPaths ‘ 𝐺 ) 𝑃 ) → ( ♯ ‘ { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) } ) ∈ { 0 , 2 } ) |