This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Formerly part of proof of eupth2 : The vertex degree remains the same for all vertices if the edges are restricted to the edges of an Eulerian path. (Contributed by Mario Carneiro, 8-Apr-2015) (Revised by AV, 26-Feb-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eupthvdres.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| eupthvdres.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | ||
| eupthvdres.g | ⊢ ( 𝜑 → 𝐺 ∈ 𝑊 ) | ||
| eupthvdres.f | ⊢ ( 𝜑 → Fun 𝐼 ) | ||
| eupthvdres.p | ⊢ ( 𝜑 → 𝐹 ( EulerPaths ‘ 𝐺 ) 𝑃 ) | ||
| eupthvdres.h | ⊢ 𝐻 = 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) 〉 | ||
| Assertion | eupthvdres | ⊢ ( 𝜑 → ( VtxDeg ‘ 𝐻 ) = ( VtxDeg ‘ 𝐺 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eupthvdres.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | eupthvdres.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | |
| 3 | eupthvdres.g | ⊢ ( 𝜑 → 𝐺 ∈ 𝑊 ) | |
| 4 | eupthvdres.f | ⊢ ( 𝜑 → Fun 𝐼 ) | |
| 5 | eupthvdres.p | ⊢ ( 𝜑 → 𝐹 ( EulerPaths ‘ 𝐺 ) 𝑃 ) | |
| 6 | eupthvdres.h | ⊢ 𝐻 = 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) 〉 | |
| 7 | opex | ⊢ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) 〉 ∈ V | |
| 8 | 6 7 | eqeltri | ⊢ 𝐻 ∈ V |
| 9 | 8 | a1i | ⊢ ( 𝜑 → 𝐻 ∈ V ) |
| 10 | 6 | fveq2i | ⊢ ( Vtx ‘ 𝐻 ) = ( Vtx ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) 〉 ) |
| 11 | 1 | fvexi | ⊢ 𝑉 ∈ V |
| 12 | 2 | fvexi | ⊢ 𝐼 ∈ V |
| 13 | 12 | resex | ⊢ ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ∈ V |
| 14 | 11 13 | pm3.2i | ⊢ ( 𝑉 ∈ V ∧ ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ∈ V ) |
| 15 | 14 | a1i | ⊢ ( 𝜑 → ( 𝑉 ∈ V ∧ ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ∈ V ) ) |
| 16 | opvtxfv | ⊢ ( ( 𝑉 ∈ V ∧ ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ∈ V ) → ( Vtx ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) 〉 ) = 𝑉 ) | |
| 17 | 15 16 | syl | ⊢ ( 𝜑 → ( Vtx ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) 〉 ) = 𝑉 ) |
| 18 | 10 17 | eqtrid | ⊢ ( 𝜑 → ( Vtx ‘ 𝐻 ) = 𝑉 ) |
| 19 | 18 1 | eqtrdi | ⊢ ( 𝜑 → ( Vtx ‘ 𝐻 ) = ( Vtx ‘ 𝐺 ) ) |
| 20 | 6 | fveq2i | ⊢ ( iEdg ‘ 𝐻 ) = ( iEdg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) 〉 ) |
| 21 | opiedgfv | ⊢ ( ( 𝑉 ∈ V ∧ ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ∈ V ) → ( iEdg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) 〉 ) = ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ) | |
| 22 | 15 21 | syl | ⊢ ( 𝜑 → ( iEdg ‘ 〈 𝑉 , ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) 〉 ) = ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ) |
| 23 | 20 22 | eqtrid | ⊢ ( 𝜑 → ( iEdg ‘ 𝐻 ) = ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ) |
| 24 | 2 | eupthf1o | ⊢ ( 𝐹 ( EulerPaths ‘ 𝐺 ) 𝑃 → 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1-onto→ dom 𝐼 ) |
| 25 | f1ofo | ⊢ ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1-onto→ dom 𝐼 → 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –onto→ dom 𝐼 ) | |
| 26 | foima | ⊢ ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –onto→ dom 𝐼 → ( 𝐹 “ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) = dom 𝐼 ) | |
| 27 | 5 24 25 26 | 4syl | ⊢ ( 𝜑 → ( 𝐹 “ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) = dom 𝐼 ) |
| 28 | 27 | reseq2d | ⊢ ( 𝜑 → ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) = ( 𝐼 ↾ dom 𝐼 ) ) |
| 29 | 4 | funfnd | ⊢ ( 𝜑 → 𝐼 Fn dom 𝐼 ) |
| 30 | fnresdm | ⊢ ( 𝐼 Fn dom 𝐼 → ( 𝐼 ↾ dom 𝐼 ) = 𝐼 ) | |
| 31 | 29 30 | syl | ⊢ ( 𝜑 → ( 𝐼 ↾ dom 𝐼 ) = 𝐼 ) |
| 32 | 23 28 31 | 3eqtrd | ⊢ ( 𝜑 → ( iEdg ‘ 𝐻 ) = 𝐼 ) |
| 33 | 32 2 | eqtrdi | ⊢ ( 𝜑 → ( iEdg ‘ 𝐻 ) = ( iEdg ‘ 𝐺 ) ) |
| 34 | 3 9 19 33 | vtxdeqd | ⊢ ( 𝜑 → ( VtxDeg ‘ 𝐻 ) = ( VtxDeg ‘ 𝐺 ) ) |