This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The only vertices of odd degree in a graph with an Eulerian path are the endpoints, and then only if the endpoints are distinct. (Contributed by Mario Carneiro, 8-Apr-2015) (Revised by AV, 26-Feb-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eupth2.v | |- V = ( Vtx ` G ) |
|
| eupth2.i | |- I = ( iEdg ` G ) |
||
| eupth2.g | |- ( ph -> G e. UPGraph ) |
||
| eupth2.f | |- ( ph -> Fun I ) |
||
| eupth2.p | |- ( ph -> F ( EulerPaths ` G ) P ) |
||
| Assertion | eupth2 | |- ( ph -> { x e. V | -. 2 || ( ( VtxDeg ` G ) ` x ) } = if ( ( P ` 0 ) = ( P ` ( # ` F ) ) , (/) , { ( P ` 0 ) , ( P ` ( # ` F ) ) } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eupth2.v | |- V = ( Vtx ` G ) |
|
| 2 | eupth2.i | |- I = ( iEdg ` G ) |
|
| 3 | eupth2.g | |- ( ph -> G e. UPGraph ) |
|
| 4 | eupth2.f | |- ( ph -> Fun I ) |
|
| 5 | eupth2.p | |- ( ph -> F ( EulerPaths ` G ) P ) |
|
| 6 | eqid | |- <. V , ( I |` ( F " ( 0 ..^ ( # ` F ) ) ) ) >. = <. V , ( I |` ( F " ( 0 ..^ ( # ` F ) ) ) ) >. |
|
| 7 | 1 2 3 4 5 6 | eupthvdres | |- ( ph -> ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ ( # ` F ) ) ) ) >. ) = ( VtxDeg ` G ) ) |
| 8 | 7 | fveq1d | |- ( ph -> ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ ( # ` F ) ) ) ) >. ) ` x ) = ( ( VtxDeg ` G ) ` x ) ) |
| 9 | 8 | breq2d | |- ( ph -> ( 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ ( # ` F ) ) ) ) >. ) ` x ) <-> 2 || ( ( VtxDeg ` G ) ` x ) ) ) |
| 10 | 9 | notbid | |- ( ph -> ( -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ ( # ` F ) ) ) ) >. ) ` x ) <-> -. 2 || ( ( VtxDeg ` G ) ` x ) ) ) |
| 11 | 10 | rabbidv | |- ( ph -> { x e. V | -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ ( # ` F ) ) ) ) >. ) ` x ) } = { x e. V | -. 2 || ( ( VtxDeg ` G ) ` x ) } ) |
| 12 | eupthiswlk | |- ( F ( EulerPaths ` G ) P -> F ( Walks ` G ) P ) |
|
| 13 | wlkcl | |- ( F ( Walks ` G ) P -> ( # ` F ) e. NN0 ) |
|
| 14 | 5 12 13 | 3syl | |- ( ph -> ( # ` F ) e. NN0 ) |
| 15 | nn0re | |- ( ( # ` F ) e. NN0 -> ( # ` F ) e. RR ) |
|
| 16 | 15 | leidd | |- ( ( # ` F ) e. NN0 -> ( # ` F ) <_ ( # ` F ) ) |
| 17 | breq1 | |- ( m = 0 -> ( m <_ ( # ` F ) <-> 0 <_ ( # ` F ) ) ) |
|
| 18 | oveq2 | |- ( m = 0 -> ( 0 ..^ m ) = ( 0 ..^ 0 ) ) |
|
| 19 | 18 | imaeq2d | |- ( m = 0 -> ( F " ( 0 ..^ m ) ) = ( F " ( 0 ..^ 0 ) ) ) |
| 20 | 19 | reseq2d | |- ( m = 0 -> ( I |` ( F " ( 0 ..^ m ) ) ) = ( I |` ( F " ( 0 ..^ 0 ) ) ) ) |
| 21 | 20 | opeq2d | |- ( m = 0 -> <. V , ( I |` ( F " ( 0 ..^ m ) ) ) >. = <. V , ( I |` ( F " ( 0 ..^ 0 ) ) ) >. ) |
| 22 | 21 | fveq2d | |- ( m = 0 -> ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ m ) ) ) >. ) = ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ 0 ) ) ) >. ) ) |
| 23 | 22 | fveq1d | |- ( m = 0 -> ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ m ) ) ) >. ) ` x ) = ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ 0 ) ) ) >. ) ` x ) ) |
| 24 | 23 | breq2d | |- ( m = 0 -> ( 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ m ) ) ) >. ) ` x ) <-> 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ 0 ) ) ) >. ) ` x ) ) ) |
| 25 | 24 | notbid | |- ( m = 0 -> ( -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ m ) ) ) >. ) ` x ) <-> -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ 0 ) ) ) >. ) ` x ) ) ) |
| 26 | 25 | rabbidv | |- ( m = 0 -> { x e. V | -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ m ) ) ) >. ) ` x ) } = { x e. V | -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ 0 ) ) ) >. ) ` x ) } ) |
| 27 | fveq2 | |- ( m = 0 -> ( P ` m ) = ( P ` 0 ) ) |
|
| 28 | 27 | eqeq2d | |- ( m = 0 -> ( ( P ` 0 ) = ( P ` m ) <-> ( P ` 0 ) = ( P ` 0 ) ) ) |
| 29 | 27 | preq2d | |- ( m = 0 -> { ( P ` 0 ) , ( P ` m ) } = { ( P ` 0 ) , ( P ` 0 ) } ) |
| 30 | 28 29 | ifbieq2d | |- ( m = 0 -> if ( ( P ` 0 ) = ( P ` m ) , (/) , { ( P ` 0 ) , ( P ` m ) } ) = if ( ( P ` 0 ) = ( P ` 0 ) , (/) , { ( P ` 0 ) , ( P ` 0 ) } ) ) |
| 31 | 26 30 | eqeq12d | |- ( m = 0 -> ( { x e. V | -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ m ) ) ) >. ) ` x ) } = if ( ( P ` 0 ) = ( P ` m ) , (/) , { ( P ` 0 ) , ( P ` m ) } ) <-> { x e. V | -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ 0 ) ) ) >. ) ` x ) } = if ( ( P ` 0 ) = ( P ` 0 ) , (/) , { ( P ` 0 ) , ( P ` 0 ) } ) ) ) |
| 32 | 17 31 | imbi12d | |- ( m = 0 -> ( ( m <_ ( # ` F ) -> { x e. V | -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ m ) ) ) >. ) ` x ) } = if ( ( P ` 0 ) = ( P ` m ) , (/) , { ( P ` 0 ) , ( P ` m ) } ) ) <-> ( 0 <_ ( # ` F ) -> { x e. V | -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ 0 ) ) ) >. ) ` x ) } = if ( ( P ` 0 ) = ( P ` 0 ) , (/) , { ( P ` 0 ) , ( P ` 0 ) } ) ) ) ) |
| 33 | 32 | imbi2d | |- ( m = 0 -> ( ( ph -> ( m <_ ( # ` F ) -> { x e. V | -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ m ) ) ) >. ) ` x ) } = if ( ( P ` 0 ) = ( P ` m ) , (/) , { ( P ` 0 ) , ( P ` m ) } ) ) ) <-> ( ph -> ( 0 <_ ( # ` F ) -> { x e. V | -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ 0 ) ) ) >. ) ` x ) } = if ( ( P ` 0 ) = ( P ` 0 ) , (/) , { ( P ` 0 ) , ( P ` 0 ) } ) ) ) ) ) |
| 34 | breq1 | |- ( m = n -> ( m <_ ( # ` F ) <-> n <_ ( # ` F ) ) ) |
|
| 35 | oveq2 | |- ( m = n -> ( 0 ..^ m ) = ( 0 ..^ n ) ) |
|
| 36 | 35 | imaeq2d | |- ( m = n -> ( F " ( 0 ..^ m ) ) = ( F " ( 0 ..^ n ) ) ) |
| 37 | 36 | reseq2d | |- ( m = n -> ( I |` ( F " ( 0 ..^ m ) ) ) = ( I |` ( F " ( 0 ..^ n ) ) ) ) |
| 38 | 37 | opeq2d | |- ( m = n -> <. V , ( I |` ( F " ( 0 ..^ m ) ) ) >. = <. V , ( I |` ( F " ( 0 ..^ n ) ) ) >. ) |
| 39 | 38 | fveq2d | |- ( m = n -> ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ m ) ) ) >. ) = ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ n ) ) ) >. ) ) |
| 40 | 39 | fveq1d | |- ( m = n -> ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ m ) ) ) >. ) ` x ) = ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ n ) ) ) >. ) ` x ) ) |
| 41 | 40 | breq2d | |- ( m = n -> ( 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ m ) ) ) >. ) ` x ) <-> 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ n ) ) ) >. ) ` x ) ) ) |
| 42 | 41 | notbid | |- ( m = n -> ( -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ m ) ) ) >. ) ` x ) <-> -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ n ) ) ) >. ) ` x ) ) ) |
| 43 | 42 | rabbidv | |- ( m = n -> { x e. V | -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ m ) ) ) >. ) ` x ) } = { x e. V | -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ n ) ) ) >. ) ` x ) } ) |
| 44 | fveq2 | |- ( m = n -> ( P ` m ) = ( P ` n ) ) |
|
| 45 | 44 | eqeq2d | |- ( m = n -> ( ( P ` 0 ) = ( P ` m ) <-> ( P ` 0 ) = ( P ` n ) ) ) |
| 46 | 44 | preq2d | |- ( m = n -> { ( P ` 0 ) , ( P ` m ) } = { ( P ` 0 ) , ( P ` n ) } ) |
| 47 | 45 46 | ifbieq2d | |- ( m = n -> if ( ( P ` 0 ) = ( P ` m ) , (/) , { ( P ` 0 ) , ( P ` m ) } ) = if ( ( P ` 0 ) = ( P ` n ) , (/) , { ( P ` 0 ) , ( P ` n ) } ) ) |
| 48 | 43 47 | eqeq12d | |- ( m = n -> ( { x e. V | -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ m ) ) ) >. ) ` x ) } = if ( ( P ` 0 ) = ( P ` m ) , (/) , { ( P ` 0 ) , ( P ` m ) } ) <-> { x e. V | -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ n ) ) ) >. ) ` x ) } = if ( ( P ` 0 ) = ( P ` n ) , (/) , { ( P ` 0 ) , ( P ` n ) } ) ) ) |
| 49 | 34 48 | imbi12d | |- ( m = n -> ( ( m <_ ( # ` F ) -> { x e. V | -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ m ) ) ) >. ) ` x ) } = if ( ( P ` 0 ) = ( P ` m ) , (/) , { ( P ` 0 ) , ( P ` m ) } ) ) <-> ( n <_ ( # ` F ) -> { x e. V | -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ n ) ) ) >. ) ` x ) } = if ( ( P ` 0 ) = ( P ` n ) , (/) , { ( P ` 0 ) , ( P ` n ) } ) ) ) ) |
| 50 | 49 | imbi2d | |- ( m = n -> ( ( ph -> ( m <_ ( # ` F ) -> { x e. V | -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ m ) ) ) >. ) ` x ) } = if ( ( P ` 0 ) = ( P ` m ) , (/) , { ( P ` 0 ) , ( P ` m ) } ) ) ) <-> ( ph -> ( n <_ ( # ` F ) -> { x e. V | -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ n ) ) ) >. ) ` x ) } = if ( ( P ` 0 ) = ( P ` n ) , (/) , { ( P ` 0 ) , ( P ` n ) } ) ) ) ) ) |
| 51 | breq1 | |- ( m = ( n + 1 ) -> ( m <_ ( # ` F ) <-> ( n + 1 ) <_ ( # ` F ) ) ) |
|
| 52 | oveq2 | |- ( m = ( n + 1 ) -> ( 0 ..^ m ) = ( 0 ..^ ( n + 1 ) ) ) |
|
| 53 | 52 | imaeq2d | |- ( m = ( n + 1 ) -> ( F " ( 0 ..^ m ) ) = ( F " ( 0 ..^ ( n + 1 ) ) ) ) |
| 54 | 53 | reseq2d | |- ( m = ( n + 1 ) -> ( I |` ( F " ( 0 ..^ m ) ) ) = ( I |` ( F " ( 0 ..^ ( n + 1 ) ) ) ) ) |
| 55 | 54 | opeq2d | |- ( m = ( n + 1 ) -> <. V , ( I |` ( F " ( 0 ..^ m ) ) ) >. = <. V , ( I |` ( F " ( 0 ..^ ( n + 1 ) ) ) ) >. ) |
| 56 | 55 | fveq2d | |- ( m = ( n + 1 ) -> ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ m ) ) ) >. ) = ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ ( n + 1 ) ) ) ) >. ) ) |
| 57 | 56 | fveq1d | |- ( m = ( n + 1 ) -> ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ m ) ) ) >. ) ` x ) = ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ ( n + 1 ) ) ) ) >. ) ` x ) ) |
| 58 | 57 | breq2d | |- ( m = ( n + 1 ) -> ( 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ m ) ) ) >. ) ` x ) <-> 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ ( n + 1 ) ) ) ) >. ) ` x ) ) ) |
| 59 | 58 | notbid | |- ( m = ( n + 1 ) -> ( -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ m ) ) ) >. ) ` x ) <-> -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ ( n + 1 ) ) ) ) >. ) ` x ) ) ) |
| 60 | 59 | rabbidv | |- ( m = ( n + 1 ) -> { x e. V | -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ m ) ) ) >. ) ` x ) } = { x e. V | -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ ( n + 1 ) ) ) ) >. ) ` x ) } ) |
| 61 | fveq2 | |- ( m = ( n + 1 ) -> ( P ` m ) = ( P ` ( n + 1 ) ) ) |
|
| 62 | 61 | eqeq2d | |- ( m = ( n + 1 ) -> ( ( P ` 0 ) = ( P ` m ) <-> ( P ` 0 ) = ( P ` ( n + 1 ) ) ) ) |
| 63 | 61 | preq2d | |- ( m = ( n + 1 ) -> { ( P ` 0 ) , ( P ` m ) } = { ( P ` 0 ) , ( P ` ( n + 1 ) ) } ) |
| 64 | 62 63 | ifbieq2d | |- ( m = ( n + 1 ) -> if ( ( P ` 0 ) = ( P ` m ) , (/) , { ( P ` 0 ) , ( P ` m ) } ) = if ( ( P ` 0 ) = ( P ` ( n + 1 ) ) , (/) , { ( P ` 0 ) , ( P ` ( n + 1 ) ) } ) ) |
| 65 | 60 64 | eqeq12d | |- ( m = ( n + 1 ) -> ( { x e. V | -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ m ) ) ) >. ) ` x ) } = if ( ( P ` 0 ) = ( P ` m ) , (/) , { ( P ` 0 ) , ( P ` m ) } ) <-> { x e. V | -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ ( n + 1 ) ) ) ) >. ) ` x ) } = if ( ( P ` 0 ) = ( P ` ( n + 1 ) ) , (/) , { ( P ` 0 ) , ( P ` ( n + 1 ) ) } ) ) ) |
| 66 | 51 65 | imbi12d | |- ( m = ( n + 1 ) -> ( ( m <_ ( # ` F ) -> { x e. V | -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ m ) ) ) >. ) ` x ) } = if ( ( P ` 0 ) = ( P ` m ) , (/) , { ( P ` 0 ) , ( P ` m ) } ) ) <-> ( ( n + 1 ) <_ ( # ` F ) -> { x e. V | -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ ( n + 1 ) ) ) ) >. ) ` x ) } = if ( ( P ` 0 ) = ( P ` ( n + 1 ) ) , (/) , { ( P ` 0 ) , ( P ` ( n + 1 ) ) } ) ) ) ) |
| 67 | 66 | imbi2d | |- ( m = ( n + 1 ) -> ( ( ph -> ( m <_ ( # ` F ) -> { x e. V | -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ m ) ) ) >. ) ` x ) } = if ( ( P ` 0 ) = ( P ` m ) , (/) , { ( P ` 0 ) , ( P ` m ) } ) ) ) <-> ( ph -> ( ( n + 1 ) <_ ( # ` F ) -> { x e. V | -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ ( n + 1 ) ) ) ) >. ) ` x ) } = if ( ( P ` 0 ) = ( P ` ( n + 1 ) ) , (/) , { ( P ` 0 ) , ( P ` ( n + 1 ) ) } ) ) ) ) ) |
| 68 | breq1 | |- ( m = ( # ` F ) -> ( m <_ ( # ` F ) <-> ( # ` F ) <_ ( # ` F ) ) ) |
|
| 69 | oveq2 | |- ( m = ( # ` F ) -> ( 0 ..^ m ) = ( 0 ..^ ( # ` F ) ) ) |
|
| 70 | 69 | imaeq2d | |- ( m = ( # ` F ) -> ( F " ( 0 ..^ m ) ) = ( F " ( 0 ..^ ( # ` F ) ) ) ) |
| 71 | 70 | reseq2d | |- ( m = ( # ` F ) -> ( I |` ( F " ( 0 ..^ m ) ) ) = ( I |` ( F " ( 0 ..^ ( # ` F ) ) ) ) ) |
| 72 | 71 | opeq2d | |- ( m = ( # ` F ) -> <. V , ( I |` ( F " ( 0 ..^ m ) ) ) >. = <. V , ( I |` ( F " ( 0 ..^ ( # ` F ) ) ) ) >. ) |
| 73 | 72 | fveq2d | |- ( m = ( # ` F ) -> ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ m ) ) ) >. ) = ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ ( # ` F ) ) ) ) >. ) ) |
| 74 | 73 | fveq1d | |- ( m = ( # ` F ) -> ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ m ) ) ) >. ) ` x ) = ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ ( # ` F ) ) ) ) >. ) ` x ) ) |
| 75 | 74 | breq2d | |- ( m = ( # ` F ) -> ( 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ m ) ) ) >. ) ` x ) <-> 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ ( # ` F ) ) ) ) >. ) ` x ) ) ) |
| 76 | 75 | notbid | |- ( m = ( # ` F ) -> ( -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ m ) ) ) >. ) ` x ) <-> -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ ( # ` F ) ) ) ) >. ) ` x ) ) ) |
| 77 | 76 | rabbidv | |- ( m = ( # ` F ) -> { x e. V | -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ m ) ) ) >. ) ` x ) } = { x e. V | -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ ( # ` F ) ) ) ) >. ) ` x ) } ) |
| 78 | fveq2 | |- ( m = ( # ` F ) -> ( P ` m ) = ( P ` ( # ` F ) ) ) |
|
| 79 | 78 | eqeq2d | |- ( m = ( # ` F ) -> ( ( P ` 0 ) = ( P ` m ) <-> ( P ` 0 ) = ( P ` ( # ` F ) ) ) ) |
| 80 | 78 | preq2d | |- ( m = ( # ` F ) -> { ( P ` 0 ) , ( P ` m ) } = { ( P ` 0 ) , ( P ` ( # ` F ) ) } ) |
| 81 | 79 80 | ifbieq2d | |- ( m = ( # ` F ) -> if ( ( P ` 0 ) = ( P ` m ) , (/) , { ( P ` 0 ) , ( P ` m ) } ) = if ( ( P ` 0 ) = ( P ` ( # ` F ) ) , (/) , { ( P ` 0 ) , ( P ` ( # ` F ) ) } ) ) |
| 82 | 77 81 | eqeq12d | |- ( m = ( # ` F ) -> ( { x e. V | -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ m ) ) ) >. ) ` x ) } = if ( ( P ` 0 ) = ( P ` m ) , (/) , { ( P ` 0 ) , ( P ` m ) } ) <-> { x e. V | -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ ( # ` F ) ) ) ) >. ) ` x ) } = if ( ( P ` 0 ) = ( P ` ( # ` F ) ) , (/) , { ( P ` 0 ) , ( P ` ( # ` F ) ) } ) ) ) |
| 83 | 68 82 | imbi12d | |- ( m = ( # ` F ) -> ( ( m <_ ( # ` F ) -> { x e. V | -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ m ) ) ) >. ) ` x ) } = if ( ( P ` 0 ) = ( P ` m ) , (/) , { ( P ` 0 ) , ( P ` m ) } ) ) <-> ( ( # ` F ) <_ ( # ` F ) -> { x e. V | -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ ( # ` F ) ) ) ) >. ) ` x ) } = if ( ( P ` 0 ) = ( P ` ( # ` F ) ) , (/) , { ( P ` 0 ) , ( P ` ( # ` F ) ) } ) ) ) ) |
| 84 | 83 | imbi2d | |- ( m = ( # ` F ) -> ( ( ph -> ( m <_ ( # ` F ) -> { x e. V | -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ m ) ) ) >. ) ` x ) } = if ( ( P ` 0 ) = ( P ` m ) , (/) , { ( P ` 0 ) , ( P ` m ) } ) ) ) <-> ( ph -> ( ( # ` F ) <_ ( # ` F ) -> { x e. V | -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ ( # ` F ) ) ) ) >. ) ` x ) } = if ( ( P ` 0 ) = ( P ` ( # ` F ) ) , (/) , { ( P ` 0 ) , ( P ` ( # ` F ) ) } ) ) ) ) ) |
| 85 | 1 2 3 4 5 | eupth2lemb | |- ( ph -> { x e. V | -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ 0 ) ) ) >. ) ` x ) } = (/) ) |
| 86 | eqid | |- ( P ` 0 ) = ( P ` 0 ) |
|
| 87 | 86 | iftruei | |- if ( ( P ` 0 ) = ( P ` 0 ) , (/) , { ( P ` 0 ) , ( P ` 0 ) } ) = (/) |
| 88 | 85 87 | eqtr4di | |- ( ph -> { x e. V | -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ 0 ) ) ) >. ) ` x ) } = if ( ( P ` 0 ) = ( P ` 0 ) , (/) , { ( P ` 0 ) , ( P ` 0 ) } ) ) |
| 89 | 88 | a1d | |- ( ph -> ( 0 <_ ( # ` F ) -> { x e. V | -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ 0 ) ) ) >. ) ` x ) } = if ( ( P ` 0 ) = ( P ` 0 ) , (/) , { ( P ` 0 ) , ( P ` 0 ) } ) ) ) |
| 90 | 1 2 3 4 5 | eupth2lems | |- ( ( ph /\ n e. NN0 ) -> ( ( n <_ ( # ` F ) -> { x e. V | -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ n ) ) ) >. ) ` x ) } = if ( ( P ` 0 ) = ( P ` n ) , (/) , { ( P ` 0 ) , ( P ` n ) } ) ) -> ( ( n + 1 ) <_ ( # ` F ) -> { x e. V | -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ ( n + 1 ) ) ) ) >. ) ` x ) } = if ( ( P ` 0 ) = ( P ` ( n + 1 ) ) , (/) , { ( P ` 0 ) , ( P ` ( n + 1 ) ) } ) ) ) ) |
| 91 | 90 | expcom | |- ( n e. NN0 -> ( ph -> ( ( n <_ ( # ` F ) -> { x e. V | -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ n ) ) ) >. ) ` x ) } = if ( ( P ` 0 ) = ( P ` n ) , (/) , { ( P ` 0 ) , ( P ` n ) } ) ) -> ( ( n + 1 ) <_ ( # ` F ) -> { x e. V | -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ ( n + 1 ) ) ) ) >. ) ` x ) } = if ( ( P ` 0 ) = ( P ` ( n + 1 ) ) , (/) , { ( P ` 0 ) , ( P ` ( n + 1 ) ) } ) ) ) ) ) |
| 92 | 91 | a2d | |- ( n e. NN0 -> ( ( ph -> ( n <_ ( # ` F ) -> { x e. V | -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ n ) ) ) >. ) ` x ) } = if ( ( P ` 0 ) = ( P ` n ) , (/) , { ( P ` 0 ) , ( P ` n ) } ) ) ) -> ( ph -> ( ( n + 1 ) <_ ( # ` F ) -> { x e. V | -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ ( n + 1 ) ) ) ) >. ) ` x ) } = if ( ( P ` 0 ) = ( P ` ( n + 1 ) ) , (/) , { ( P ` 0 ) , ( P ` ( n + 1 ) ) } ) ) ) ) ) |
| 93 | 33 50 67 84 89 92 | nn0ind | |- ( ( # ` F ) e. NN0 -> ( ph -> ( ( # ` F ) <_ ( # ` F ) -> { x e. V | -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ ( # ` F ) ) ) ) >. ) ` x ) } = if ( ( P ` 0 ) = ( P ` ( # ` F ) ) , (/) , { ( P ` 0 ) , ( P ` ( # ` F ) ) } ) ) ) ) |
| 94 | 16 93 | mpid | |- ( ( # ` F ) e. NN0 -> ( ph -> { x e. V | -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ ( # ` F ) ) ) ) >. ) ` x ) } = if ( ( P ` 0 ) = ( P ` ( # ` F ) ) , (/) , { ( P ` 0 ) , ( P ` ( # ` F ) ) } ) ) ) |
| 95 | 14 94 | mpcom | |- ( ph -> { x e. V | -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ ( # ` F ) ) ) ) >. ) ` x ) } = if ( ( P ` 0 ) = ( P ` ( # ` F ) ) , (/) , { ( P ` 0 ) , ( P ` ( # ` F ) ) } ) ) |
| 96 | 11 95 | eqtr3d | |- ( ph -> { x e. V | -. 2 || ( ( VtxDeg ` G ) ` x ) } = if ( ( P ` 0 ) = ( P ` ( # ` F ) ) , (/) , { ( P ` 0 ) , ( P ` ( # ` F ) ) } ) ) |