This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A pseudograph with an Eulerian path has either zero or two vertices of odd degree. (Contributed by Mario Carneiro, 7-Apr-2015) (Revised by AV, 26-Feb-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | eulerpathpr.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| Assertion | eulerpath | ⊢ ( ( 𝐺 ∈ UPGraph ∧ ( EulerPaths ‘ 𝐺 ) ≠ ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) } ) ∈ { 0 , 2 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eulerpathpr.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | releupth | ⊢ Rel ( EulerPaths ‘ 𝐺 ) | |
| 3 | reldm0 | ⊢ ( Rel ( EulerPaths ‘ 𝐺 ) → ( ( EulerPaths ‘ 𝐺 ) = ∅ ↔ dom ( EulerPaths ‘ 𝐺 ) = ∅ ) ) | |
| 4 | 2 3 | ax-mp | ⊢ ( ( EulerPaths ‘ 𝐺 ) = ∅ ↔ dom ( EulerPaths ‘ 𝐺 ) = ∅ ) |
| 5 | 4 | necon3bii | ⊢ ( ( EulerPaths ‘ 𝐺 ) ≠ ∅ ↔ dom ( EulerPaths ‘ 𝐺 ) ≠ ∅ ) |
| 6 | n0 | ⊢ ( dom ( EulerPaths ‘ 𝐺 ) ≠ ∅ ↔ ∃ 𝑓 𝑓 ∈ dom ( EulerPaths ‘ 𝐺 ) ) | |
| 7 | 5 6 | bitri | ⊢ ( ( EulerPaths ‘ 𝐺 ) ≠ ∅ ↔ ∃ 𝑓 𝑓 ∈ dom ( EulerPaths ‘ 𝐺 ) ) |
| 8 | vex | ⊢ 𝑓 ∈ V | |
| 9 | 8 | eldm | ⊢ ( 𝑓 ∈ dom ( EulerPaths ‘ 𝐺 ) ↔ ∃ 𝑝 𝑓 ( EulerPaths ‘ 𝐺 ) 𝑝 ) |
| 10 | 1 | eulerpathpr | ⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑓 ( EulerPaths ‘ 𝐺 ) 𝑝 ) → ( ♯ ‘ { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) } ) ∈ { 0 , 2 } ) |
| 11 | 10 | expcom | ⊢ ( 𝑓 ( EulerPaths ‘ 𝐺 ) 𝑝 → ( 𝐺 ∈ UPGraph → ( ♯ ‘ { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) } ) ∈ { 0 , 2 } ) ) |
| 12 | 11 | exlimiv | ⊢ ( ∃ 𝑝 𝑓 ( EulerPaths ‘ 𝐺 ) 𝑝 → ( 𝐺 ∈ UPGraph → ( ♯ ‘ { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) } ) ∈ { 0 , 2 } ) ) |
| 13 | 9 12 | sylbi | ⊢ ( 𝑓 ∈ dom ( EulerPaths ‘ 𝐺 ) → ( 𝐺 ∈ UPGraph → ( ♯ ‘ { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) } ) ∈ { 0 , 2 } ) ) |
| 14 | 13 | exlimiv | ⊢ ( ∃ 𝑓 𝑓 ∈ dom ( EulerPaths ‘ 𝐺 ) → ( 𝐺 ∈ UPGraph → ( ♯ ‘ { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) } ) ∈ { 0 , 2 } ) ) |
| 15 | 7 14 | sylbi | ⊢ ( ( EulerPaths ‘ 𝐺 ) ≠ ∅ → ( 𝐺 ∈ UPGraph → ( ♯ ‘ { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) } ) ∈ { 0 , 2 } ) ) |
| 16 | 15 | impcom | ⊢ ( ( 𝐺 ∈ UPGraph ∧ ( EulerPaths ‘ 𝐺 ) ≠ ∅ ) → ( ♯ ‘ { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) } ) ∈ { 0 , 2 } ) |