This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If an integer divides either of two others, it divides their product. (Contributed by Paul Chapman, 17-Nov-2012) (Proof shortened by Mario Carneiro, 17-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ordvdsmul | ⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝐾 ∥ 𝑀 ∨ 𝐾 ∥ 𝑁 ) → 𝐾 ∥ ( 𝑀 · 𝑁 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvdsmultr1 | ⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝐾 ∥ 𝑀 → 𝐾 ∥ ( 𝑀 · 𝑁 ) ) ) | |
| 2 | dvdsmultr2 | ⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝐾 ∥ 𝑁 → 𝐾 ∥ ( 𝑀 · 𝑁 ) ) ) | |
| 3 | 1 2 | jaod | ⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝐾 ∥ 𝑀 ∨ 𝐾 ∥ 𝑁 ) → 𝐾 ∥ ( 𝑀 · 𝑁 ) ) ) |