This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 1 for estrres . (Contributed by AV, 14-Mar-2020) (Proof shortened by AV, 28-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | estrres.c | ⊢ ( 𝜑 → 𝐶 = { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( Hom ‘ ndx ) , 𝐻 〉 , 〈 ( comp ‘ ndx ) , · 〉 } ) | |
| estrres.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝑉 ) | ||
| Assertion | estrreslem1 | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | estrres.c | ⊢ ( 𝜑 → 𝐶 = { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( Hom ‘ ndx ) , 𝐻 〉 , 〈 ( comp ‘ ndx ) , · 〉 } ) | |
| 2 | estrres.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝑉 ) | |
| 3 | 1 | fveq2d | ⊢ ( 𝜑 → ( Base ‘ 𝐶 ) = ( Base ‘ { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( Hom ‘ ndx ) , 𝐻 〉 , 〈 ( comp ‘ ndx ) , · 〉 } ) ) |
| 4 | baseid | ⊢ Base = Slot ( Base ‘ ndx ) | |
| 5 | tpex | ⊢ { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( Hom ‘ ndx ) , 𝐻 〉 , 〈 ( comp ‘ ndx ) , · 〉 } ∈ V | |
| 6 | 5 | a1i | ⊢ ( 𝜑 → { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( Hom ‘ ndx ) , 𝐻 〉 , 〈 ( comp ‘ ndx ) , · 〉 } ∈ V ) |
| 7 | 4 6 | strfvnd | ⊢ ( 𝜑 → ( Base ‘ { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( Hom ‘ ndx ) , 𝐻 〉 , 〈 ( comp ‘ ndx ) , · 〉 } ) = ( { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( Hom ‘ ndx ) , 𝐻 〉 , 〈 ( comp ‘ ndx ) , · 〉 } ‘ ( Base ‘ ndx ) ) ) |
| 8 | fvexd | ⊢ ( 𝜑 → ( Base ‘ ndx ) ∈ V ) | |
| 9 | slotsbhcdif | ⊢ ( ( Base ‘ ndx ) ≠ ( Hom ‘ ndx ) ∧ ( Base ‘ ndx ) ≠ ( comp ‘ ndx ) ∧ ( Hom ‘ ndx ) ≠ ( comp ‘ ndx ) ) | |
| 10 | 3simpa | ⊢ ( ( ( Base ‘ ndx ) ≠ ( Hom ‘ ndx ) ∧ ( Base ‘ ndx ) ≠ ( comp ‘ ndx ) ∧ ( Hom ‘ ndx ) ≠ ( comp ‘ ndx ) ) → ( ( Base ‘ ndx ) ≠ ( Hom ‘ ndx ) ∧ ( Base ‘ ndx ) ≠ ( comp ‘ ndx ) ) ) | |
| 11 | 9 10 | mp1i | ⊢ ( 𝜑 → ( ( Base ‘ ndx ) ≠ ( Hom ‘ ndx ) ∧ ( Base ‘ ndx ) ≠ ( comp ‘ ndx ) ) ) |
| 12 | fvtp1g | ⊢ ( ( ( ( Base ‘ ndx ) ∈ V ∧ 𝐵 ∈ 𝑉 ) ∧ ( ( Base ‘ ndx ) ≠ ( Hom ‘ ndx ) ∧ ( Base ‘ ndx ) ≠ ( comp ‘ ndx ) ) ) → ( { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( Hom ‘ ndx ) , 𝐻 〉 , 〈 ( comp ‘ ndx ) , · 〉 } ‘ ( Base ‘ ndx ) ) = 𝐵 ) | |
| 13 | 8 2 11 12 | syl21anc | ⊢ ( 𝜑 → ( { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( Hom ‘ ndx ) , 𝐻 〉 , 〈 ( comp ‘ ndx ) , · 〉 } ‘ ( Base ‘ ndx ) ) = 𝐵 ) |
| 14 | 3 7 13 | 3eqtrrd | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐶 ) ) |