This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for estrccat . (Contributed by AV, 8-Mar-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | estrccat.c | ⊢ 𝐶 = ( ExtStrCat ‘ 𝑈 ) | |
| Assertion | estrccatid | ⊢ ( 𝑈 ∈ 𝑉 → ( 𝐶 ∈ Cat ∧ ( Id ‘ 𝐶 ) = ( 𝑥 ∈ 𝑈 ↦ ( I ↾ ( Base ‘ 𝑥 ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | estrccat.c | ⊢ 𝐶 = ( ExtStrCat ‘ 𝑈 ) | |
| 2 | id | ⊢ ( 𝑈 ∈ 𝑉 → 𝑈 ∈ 𝑉 ) | |
| 3 | 1 2 | estrcbas | ⊢ ( 𝑈 ∈ 𝑉 → 𝑈 = ( Base ‘ 𝐶 ) ) |
| 4 | eqidd | ⊢ ( 𝑈 ∈ 𝑉 → ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) ) | |
| 5 | eqidd | ⊢ ( 𝑈 ∈ 𝑉 → ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 ) ) | |
| 6 | 1 | fvexi | ⊢ 𝐶 ∈ V |
| 7 | 6 | a1i | ⊢ ( 𝑈 ∈ 𝑉 → 𝐶 ∈ V ) |
| 8 | biid | ⊢ ( ( ( 𝑤 ∈ 𝑈 ∧ 𝑥 ∈ 𝑈 ) ∧ ( 𝑦 ∈ 𝑈 ∧ 𝑧 ∈ 𝑈 ) ∧ ( 𝑓 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) 𝑥 ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ ℎ ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ↔ ( ( 𝑤 ∈ 𝑈 ∧ 𝑥 ∈ 𝑈 ) ∧ ( 𝑦 ∈ 𝑈 ∧ 𝑧 ∈ 𝑈 ) ∧ ( 𝑓 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) 𝑥 ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ ℎ ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ) | |
| 9 | f1oi | ⊢ ( I ↾ ( Base ‘ 𝑥 ) ) : ( Base ‘ 𝑥 ) –1-1-onto→ ( Base ‘ 𝑥 ) | |
| 10 | f1of | ⊢ ( ( I ↾ ( Base ‘ 𝑥 ) ) : ( Base ‘ 𝑥 ) –1-1-onto→ ( Base ‘ 𝑥 ) → ( I ↾ ( Base ‘ 𝑥 ) ) : ( Base ‘ 𝑥 ) ⟶ ( Base ‘ 𝑥 ) ) | |
| 11 | 9 10 | mp1i | ⊢ ( ( 𝑈 ∈ 𝑉 ∧ 𝑥 ∈ 𝑈 ) → ( I ↾ ( Base ‘ 𝑥 ) ) : ( Base ‘ 𝑥 ) ⟶ ( Base ‘ 𝑥 ) ) |
| 12 | simpl | ⊢ ( ( 𝑈 ∈ 𝑉 ∧ 𝑥 ∈ 𝑈 ) → 𝑈 ∈ 𝑉 ) | |
| 13 | eqid | ⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) | |
| 14 | simpr | ⊢ ( ( 𝑈 ∈ 𝑉 ∧ 𝑥 ∈ 𝑈 ) → 𝑥 ∈ 𝑈 ) | |
| 15 | eqid | ⊢ ( Base ‘ 𝑥 ) = ( Base ‘ 𝑥 ) | |
| 16 | 1 12 13 14 14 15 15 | elestrchom | ⊢ ( ( 𝑈 ∈ 𝑉 ∧ 𝑥 ∈ 𝑈 ) → ( ( I ↾ ( Base ‘ 𝑥 ) ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ↔ ( I ↾ ( Base ‘ 𝑥 ) ) : ( Base ‘ 𝑥 ) ⟶ ( Base ‘ 𝑥 ) ) ) |
| 17 | 11 16 | mpbird | ⊢ ( ( 𝑈 ∈ 𝑉 ∧ 𝑥 ∈ 𝑈 ) → ( I ↾ ( Base ‘ 𝑥 ) ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ) |
| 18 | simpl | ⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( ( 𝑤 ∈ 𝑈 ∧ 𝑥 ∈ 𝑈 ) ∧ ( 𝑦 ∈ 𝑈 ∧ 𝑧 ∈ 𝑈 ) ∧ ( 𝑓 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) 𝑥 ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ ℎ ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ) → 𝑈 ∈ 𝑉 ) | |
| 19 | eqid | ⊢ ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 ) | |
| 20 | simpr1l | ⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( ( 𝑤 ∈ 𝑈 ∧ 𝑥 ∈ 𝑈 ) ∧ ( 𝑦 ∈ 𝑈 ∧ 𝑧 ∈ 𝑈 ) ∧ ( 𝑓 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) 𝑥 ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ ℎ ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ) → 𝑤 ∈ 𝑈 ) | |
| 21 | simpr1r | ⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( ( 𝑤 ∈ 𝑈 ∧ 𝑥 ∈ 𝑈 ) ∧ ( 𝑦 ∈ 𝑈 ∧ 𝑧 ∈ 𝑈 ) ∧ ( 𝑓 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) 𝑥 ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ ℎ ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ) → 𝑥 ∈ 𝑈 ) | |
| 22 | eqid | ⊢ ( Base ‘ 𝑤 ) = ( Base ‘ 𝑤 ) | |
| 23 | simpr31 | ⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( ( 𝑤 ∈ 𝑈 ∧ 𝑥 ∈ 𝑈 ) ∧ ( 𝑦 ∈ 𝑈 ∧ 𝑧 ∈ 𝑈 ) ∧ ( 𝑓 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) 𝑥 ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ ℎ ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ) → 𝑓 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) 𝑥 ) ) | |
| 24 | 1 18 13 20 21 22 15 | elestrchom | ⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( ( 𝑤 ∈ 𝑈 ∧ 𝑥 ∈ 𝑈 ) ∧ ( 𝑦 ∈ 𝑈 ∧ 𝑧 ∈ 𝑈 ) ∧ ( 𝑓 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) 𝑥 ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ ℎ ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ) → ( 𝑓 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) 𝑥 ) ↔ 𝑓 : ( Base ‘ 𝑤 ) ⟶ ( Base ‘ 𝑥 ) ) ) |
| 25 | 23 24 | mpbid | ⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( ( 𝑤 ∈ 𝑈 ∧ 𝑥 ∈ 𝑈 ) ∧ ( 𝑦 ∈ 𝑈 ∧ 𝑧 ∈ 𝑈 ) ∧ ( 𝑓 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) 𝑥 ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ ℎ ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ) → 𝑓 : ( Base ‘ 𝑤 ) ⟶ ( Base ‘ 𝑥 ) ) |
| 26 | 9 10 | mp1i | ⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( ( 𝑤 ∈ 𝑈 ∧ 𝑥 ∈ 𝑈 ) ∧ ( 𝑦 ∈ 𝑈 ∧ 𝑧 ∈ 𝑈 ) ∧ ( 𝑓 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) 𝑥 ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ ℎ ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ) → ( I ↾ ( Base ‘ 𝑥 ) ) : ( Base ‘ 𝑥 ) ⟶ ( Base ‘ 𝑥 ) ) |
| 27 | 1 18 19 20 21 21 22 15 15 25 26 | estrcco | ⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( ( 𝑤 ∈ 𝑈 ∧ 𝑥 ∈ 𝑈 ) ∧ ( 𝑦 ∈ 𝑈 ∧ 𝑧 ∈ 𝑈 ) ∧ ( 𝑓 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) 𝑥 ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ ℎ ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ) → ( ( I ↾ ( Base ‘ 𝑥 ) ) ( 〈 𝑤 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = ( ( I ↾ ( Base ‘ 𝑥 ) ) ∘ 𝑓 ) ) |
| 28 | fcoi2 | ⊢ ( 𝑓 : ( Base ‘ 𝑤 ) ⟶ ( Base ‘ 𝑥 ) → ( ( I ↾ ( Base ‘ 𝑥 ) ) ∘ 𝑓 ) = 𝑓 ) | |
| 29 | 25 28 | syl | ⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( ( 𝑤 ∈ 𝑈 ∧ 𝑥 ∈ 𝑈 ) ∧ ( 𝑦 ∈ 𝑈 ∧ 𝑧 ∈ 𝑈 ) ∧ ( 𝑓 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) 𝑥 ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ ℎ ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ) → ( ( I ↾ ( Base ‘ 𝑥 ) ) ∘ 𝑓 ) = 𝑓 ) |
| 30 | 27 29 | eqtrd | ⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( ( 𝑤 ∈ 𝑈 ∧ 𝑥 ∈ 𝑈 ) ∧ ( 𝑦 ∈ 𝑈 ∧ 𝑧 ∈ 𝑈 ) ∧ ( 𝑓 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) 𝑥 ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ ℎ ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ) → ( ( I ↾ ( Base ‘ 𝑥 ) ) ( 〈 𝑤 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = 𝑓 ) |
| 31 | simpr2l | ⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( ( 𝑤 ∈ 𝑈 ∧ 𝑥 ∈ 𝑈 ) ∧ ( 𝑦 ∈ 𝑈 ∧ 𝑧 ∈ 𝑈 ) ∧ ( 𝑓 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) 𝑥 ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ ℎ ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ) → 𝑦 ∈ 𝑈 ) | |
| 32 | eqid | ⊢ ( Base ‘ 𝑦 ) = ( Base ‘ 𝑦 ) | |
| 33 | simpr32 | ⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( ( 𝑤 ∈ 𝑈 ∧ 𝑥 ∈ 𝑈 ) ∧ ( 𝑦 ∈ 𝑈 ∧ 𝑧 ∈ 𝑈 ) ∧ ( 𝑓 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) 𝑥 ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ ℎ ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ) → 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) | |
| 34 | 1 18 13 21 31 15 32 | elestrchom | ⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( ( 𝑤 ∈ 𝑈 ∧ 𝑥 ∈ 𝑈 ) ∧ ( 𝑦 ∈ 𝑈 ∧ 𝑧 ∈ 𝑈 ) ∧ ( 𝑓 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) 𝑥 ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ ℎ ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ) → ( 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ↔ 𝑔 : ( Base ‘ 𝑥 ) ⟶ ( Base ‘ 𝑦 ) ) ) |
| 35 | 33 34 | mpbid | ⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( ( 𝑤 ∈ 𝑈 ∧ 𝑥 ∈ 𝑈 ) ∧ ( 𝑦 ∈ 𝑈 ∧ 𝑧 ∈ 𝑈 ) ∧ ( 𝑓 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) 𝑥 ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ ℎ ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ) → 𝑔 : ( Base ‘ 𝑥 ) ⟶ ( Base ‘ 𝑦 ) ) |
| 36 | 1 18 19 21 21 31 15 15 32 26 35 | estrcco | ⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( ( 𝑤 ∈ 𝑈 ∧ 𝑥 ∈ 𝑈 ) ∧ ( 𝑦 ∈ 𝑈 ∧ 𝑧 ∈ 𝑈 ) ∧ ( 𝑓 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) 𝑥 ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ ℎ ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ) → ( 𝑔 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) ( I ↾ ( Base ‘ 𝑥 ) ) ) = ( 𝑔 ∘ ( I ↾ ( Base ‘ 𝑥 ) ) ) ) |
| 37 | fcoi1 | ⊢ ( 𝑔 : ( Base ‘ 𝑥 ) ⟶ ( Base ‘ 𝑦 ) → ( 𝑔 ∘ ( I ↾ ( Base ‘ 𝑥 ) ) ) = 𝑔 ) | |
| 38 | 35 37 | syl | ⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( ( 𝑤 ∈ 𝑈 ∧ 𝑥 ∈ 𝑈 ) ∧ ( 𝑦 ∈ 𝑈 ∧ 𝑧 ∈ 𝑈 ) ∧ ( 𝑓 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) 𝑥 ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ ℎ ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ) → ( 𝑔 ∘ ( I ↾ ( Base ‘ 𝑥 ) ) ) = 𝑔 ) |
| 39 | 36 38 | eqtrd | ⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( ( 𝑤 ∈ 𝑈 ∧ 𝑥 ∈ 𝑈 ) ∧ ( 𝑦 ∈ 𝑈 ∧ 𝑧 ∈ 𝑈 ) ∧ ( 𝑓 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) 𝑥 ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ ℎ ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ) → ( 𝑔 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) ( I ↾ ( Base ‘ 𝑥 ) ) ) = 𝑔 ) |
| 40 | 1 18 19 20 21 31 22 15 32 25 35 | estrcco | ⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( ( 𝑤 ∈ 𝑈 ∧ 𝑥 ∈ 𝑈 ) ∧ ( 𝑦 ∈ 𝑈 ∧ 𝑧 ∈ 𝑈 ) ∧ ( 𝑓 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) 𝑥 ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ ℎ ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ) → ( 𝑔 ( 〈 𝑤 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) 𝑓 ) = ( 𝑔 ∘ 𝑓 ) ) |
| 41 | fco | ⊢ ( ( 𝑔 : ( Base ‘ 𝑥 ) ⟶ ( Base ‘ 𝑦 ) ∧ 𝑓 : ( Base ‘ 𝑤 ) ⟶ ( Base ‘ 𝑥 ) ) → ( 𝑔 ∘ 𝑓 ) : ( Base ‘ 𝑤 ) ⟶ ( Base ‘ 𝑦 ) ) | |
| 42 | 35 25 41 | syl2anc | ⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( ( 𝑤 ∈ 𝑈 ∧ 𝑥 ∈ 𝑈 ) ∧ ( 𝑦 ∈ 𝑈 ∧ 𝑧 ∈ 𝑈 ) ∧ ( 𝑓 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) 𝑥 ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ ℎ ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ) → ( 𝑔 ∘ 𝑓 ) : ( Base ‘ 𝑤 ) ⟶ ( Base ‘ 𝑦 ) ) |
| 43 | 1 18 13 20 31 22 32 | elestrchom | ⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( ( 𝑤 ∈ 𝑈 ∧ 𝑥 ∈ 𝑈 ) ∧ ( 𝑦 ∈ 𝑈 ∧ 𝑧 ∈ 𝑈 ) ∧ ( 𝑓 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) 𝑥 ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ ℎ ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ) → ( ( 𝑔 ∘ 𝑓 ) ∈ ( 𝑤 ( Hom ‘ 𝐶 ) 𝑦 ) ↔ ( 𝑔 ∘ 𝑓 ) : ( Base ‘ 𝑤 ) ⟶ ( Base ‘ 𝑦 ) ) ) |
| 44 | 42 43 | mpbird | ⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( ( 𝑤 ∈ 𝑈 ∧ 𝑥 ∈ 𝑈 ) ∧ ( 𝑦 ∈ 𝑈 ∧ 𝑧 ∈ 𝑈 ) ∧ ( 𝑓 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) 𝑥 ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ ℎ ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ) → ( 𝑔 ∘ 𝑓 ) ∈ ( 𝑤 ( Hom ‘ 𝐶 ) 𝑦 ) ) |
| 45 | 40 44 | eqeltrd | ⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( ( 𝑤 ∈ 𝑈 ∧ 𝑥 ∈ 𝑈 ) ∧ ( 𝑦 ∈ 𝑈 ∧ 𝑧 ∈ 𝑈 ) ∧ ( 𝑓 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) 𝑥 ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ ℎ ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ) → ( 𝑔 ( 〈 𝑤 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) 𝑓 ) ∈ ( 𝑤 ( Hom ‘ 𝐶 ) 𝑦 ) ) |
| 46 | coass | ⊢ ( ( ℎ ∘ 𝑔 ) ∘ 𝑓 ) = ( ℎ ∘ ( 𝑔 ∘ 𝑓 ) ) | |
| 47 | simpr2r | ⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( ( 𝑤 ∈ 𝑈 ∧ 𝑥 ∈ 𝑈 ) ∧ ( 𝑦 ∈ 𝑈 ∧ 𝑧 ∈ 𝑈 ) ∧ ( 𝑓 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) 𝑥 ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ ℎ ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ) → 𝑧 ∈ 𝑈 ) | |
| 48 | eqid | ⊢ ( Base ‘ 𝑧 ) = ( Base ‘ 𝑧 ) | |
| 49 | simpr33 | ⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( ( 𝑤 ∈ 𝑈 ∧ 𝑥 ∈ 𝑈 ) ∧ ( 𝑦 ∈ 𝑈 ∧ 𝑧 ∈ 𝑈 ) ∧ ( 𝑓 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) 𝑥 ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ ℎ ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ) → ℎ ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) | |
| 50 | 1 18 13 31 47 32 48 | elestrchom | ⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( ( 𝑤 ∈ 𝑈 ∧ 𝑥 ∈ 𝑈 ) ∧ ( 𝑦 ∈ 𝑈 ∧ 𝑧 ∈ 𝑈 ) ∧ ( 𝑓 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) 𝑥 ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ ℎ ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ) → ( ℎ ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ↔ ℎ : ( Base ‘ 𝑦 ) ⟶ ( Base ‘ 𝑧 ) ) ) |
| 51 | 49 50 | mpbid | ⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( ( 𝑤 ∈ 𝑈 ∧ 𝑥 ∈ 𝑈 ) ∧ ( 𝑦 ∈ 𝑈 ∧ 𝑧 ∈ 𝑈 ) ∧ ( 𝑓 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) 𝑥 ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ ℎ ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ) → ℎ : ( Base ‘ 𝑦 ) ⟶ ( Base ‘ 𝑧 ) ) |
| 52 | fco | ⊢ ( ( ℎ : ( Base ‘ 𝑦 ) ⟶ ( Base ‘ 𝑧 ) ∧ 𝑔 : ( Base ‘ 𝑥 ) ⟶ ( Base ‘ 𝑦 ) ) → ( ℎ ∘ 𝑔 ) : ( Base ‘ 𝑥 ) ⟶ ( Base ‘ 𝑧 ) ) | |
| 53 | 51 35 52 | syl2anc | ⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( ( 𝑤 ∈ 𝑈 ∧ 𝑥 ∈ 𝑈 ) ∧ ( 𝑦 ∈ 𝑈 ∧ 𝑧 ∈ 𝑈 ) ∧ ( 𝑓 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) 𝑥 ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ ℎ ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ) → ( ℎ ∘ 𝑔 ) : ( Base ‘ 𝑥 ) ⟶ ( Base ‘ 𝑧 ) ) |
| 54 | 1 18 19 20 21 47 22 15 48 25 53 | estrcco | ⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( ( 𝑤 ∈ 𝑈 ∧ 𝑥 ∈ 𝑈 ) ∧ ( 𝑦 ∈ 𝑈 ∧ 𝑧 ∈ 𝑈 ) ∧ ( 𝑓 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) 𝑥 ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ ℎ ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ) → ( ( ℎ ∘ 𝑔 ) ( 〈 𝑤 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) = ( ( ℎ ∘ 𝑔 ) ∘ 𝑓 ) ) |
| 55 | 1 18 19 20 31 47 22 32 48 42 51 | estrcco | ⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( ( 𝑤 ∈ 𝑈 ∧ 𝑥 ∈ 𝑈 ) ∧ ( 𝑦 ∈ 𝑈 ∧ 𝑧 ∈ 𝑈 ) ∧ ( 𝑓 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) 𝑥 ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ ℎ ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ) → ( ℎ ( 〈 𝑤 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) ( 𝑔 ∘ 𝑓 ) ) = ( ℎ ∘ ( 𝑔 ∘ 𝑓 ) ) ) |
| 56 | 46 54 55 | 3eqtr4a | ⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( ( 𝑤 ∈ 𝑈 ∧ 𝑥 ∈ 𝑈 ) ∧ ( 𝑦 ∈ 𝑈 ∧ 𝑧 ∈ 𝑈 ) ∧ ( 𝑓 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) 𝑥 ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ ℎ ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ) → ( ( ℎ ∘ 𝑔 ) ( 〈 𝑤 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) = ( ℎ ( 〈 𝑤 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) ( 𝑔 ∘ 𝑓 ) ) ) |
| 57 | 1 18 19 21 31 47 15 32 48 35 51 | estrcco | ⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( ( 𝑤 ∈ 𝑈 ∧ 𝑥 ∈ 𝑈 ) ∧ ( 𝑦 ∈ 𝑈 ∧ 𝑧 ∈ 𝑈 ) ∧ ( 𝑓 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) 𝑥 ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ ℎ ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ) → ( ℎ ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑔 ) = ( ℎ ∘ 𝑔 ) ) |
| 58 | 57 | oveq1d | ⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( ( 𝑤 ∈ 𝑈 ∧ 𝑥 ∈ 𝑈 ) ∧ ( 𝑦 ∈ 𝑈 ∧ 𝑧 ∈ 𝑈 ) ∧ ( 𝑓 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) 𝑥 ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ ℎ ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ) → ( ( ℎ ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑔 ) ( 〈 𝑤 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) = ( ( ℎ ∘ 𝑔 ) ( 〈 𝑤 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) |
| 59 | 40 | oveq2d | ⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( ( 𝑤 ∈ 𝑈 ∧ 𝑥 ∈ 𝑈 ) ∧ ( 𝑦 ∈ 𝑈 ∧ 𝑧 ∈ 𝑈 ) ∧ ( 𝑓 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) 𝑥 ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ ℎ ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ) → ( ℎ ( 〈 𝑤 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) ( 𝑔 ( 〈 𝑤 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) 𝑓 ) ) = ( ℎ ( 〈 𝑤 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) ( 𝑔 ∘ 𝑓 ) ) ) |
| 60 | 56 58 59 | 3eqtr4d | ⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( ( 𝑤 ∈ 𝑈 ∧ 𝑥 ∈ 𝑈 ) ∧ ( 𝑦 ∈ 𝑈 ∧ 𝑧 ∈ 𝑈 ) ∧ ( 𝑓 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) 𝑥 ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ ℎ ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ) → ( ( ℎ ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑔 ) ( 〈 𝑤 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) = ( ℎ ( 〈 𝑤 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) ( 𝑔 ( 〈 𝑤 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) 𝑓 ) ) ) |
| 61 | 3 4 5 7 8 17 30 39 45 60 | iscatd2 | ⊢ ( 𝑈 ∈ 𝑉 → ( 𝐶 ∈ Cat ∧ ( Id ‘ 𝐶 ) = ( 𝑥 ∈ 𝑈 ↦ ( I ↾ ( Base ‘ 𝑥 ) ) ) ) ) |