This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If two metrics are strongly equivalent, one is complete iff the other is. Unlike equivcau , metss2 , this theorem does not have a one-directional form - it is possible for a metric C that is strongly finer than the complete metric D to be incomplete and vice versa. Consider D = the metric on RR induced by the usual homeomorphism from ( 0 , 1 ) against the usual metric C on RR and against the discrete metric E on RR . Then both C and E are complete but D is not, and C is strongly finer than D , which is strongly finer than E . (Contributed by Mario Carneiro, 15-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | equivcmet.1 | |- ( ph -> C e. ( Met ` X ) ) |
|
| equivcmet.2 | |- ( ph -> D e. ( Met ` X ) ) |
||
| equivcmet.3 | |- ( ph -> R e. RR+ ) |
||
| equivcmet.4 | |- ( ph -> S e. RR+ ) |
||
| equivcmet.5 | |- ( ( ph /\ ( x e. X /\ y e. X ) ) -> ( x C y ) <_ ( R x. ( x D y ) ) ) |
||
| equivcmet.6 | |- ( ( ph /\ ( x e. X /\ y e. X ) ) -> ( x D y ) <_ ( S x. ( x C y ) ) ) |
||
| Assertion | equivcmet | |- ( ph -> ( C e. ( CMet ` X ) <-> D e. ( CMet ` X ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | equivcmet.1 | |- ( ph -> C e. ( Met ` X ) ) |
|
| 2 | equivcmet.2 | |- ( ph -> D e. ( Met ` X ) ) |
|
| 3 | equivcmet.3 | |- ( ph -> R e. RR+ ) |
|
| 4 | equivcmet.4 | |- ( ph -> S e. RR+ ) |
|
| 5 | equivcmet.5 | |- ( ( ph /\ ( x e. X /\ y e. X ) ) -> ( x C y ) <_ ( R x. ( x D y ) ) ) |
|
| 6 | equivcmet.6 | |- ( ( ph /\ ( x e. X /\ y e. X ) ) -> ( x D y ) <_ ( S x. ( x C y ) ) ) |
|
| 7 | 1 2 | 2thd | |- ( ph -> ( C e. ( Met ` X ) <-> D e. ( Met ` X ) ) ) |
| 8 | 2 1 4 6 | equivcfil | |- ( ph -> ( CauFil ` C ) C_ ( CauFil ` D ) ) |
| 9 | 1 2 3 5 | equivcfil | |- ( ph -> ( CauFil ` D ) C_ ( CauFil ` C ) ) |
| 10 | 8 9 | eqssd | |- ( ph -> ( CauFil ` C ) = ( CauFil ` D ) ) |
| 11 | eqid | |- ( MetOpen ` C ) = ( MetOpen ` C ) |
|
| 12 | eqid | |- ( MetOpen ` D ) = ( MetOpen ` D ) |
|
| 13 | 11 12 1 2 3 5 | metss2 | |- ( ph -> ( MetOpen ` C ) C_ ( MetOpen ` D ) ) |
| 14 | 12 11 2 1 4 6 | metss2 | |- ( ph -> ( MetOpen ` D ) C_ ( MetOpen ` C ) ) |
| 15 | 13 14 | eqssd | |- ( ph -> ( MetOpen ` C ) = ( MetOpen ` D ) ) |
| 16 | 15 | oveq1d | |- ( ph -> ( ( MetOpen ` C ) fLim f ) = ( ( MetOpen ` D ) fLim f ) ) |
| 17 | 16 | neeq1d | |- ( ph -> ( ( ( MetOpen ` C ) fLim f ) =/= (/) <-> ( ( MetOpen ` D ) fLim f ) =/= (/) ) ) |
| 18 | 10 17 | raleqbidv | |- ( ph -> ( A. f e. ( CauFil ` C ) ( ( MetOpen ` C ) fLim f ) =/= (/) <-> A. f e. ( CauFil ` D ) ( ( MetOpen ` D ) fLim f ) =/= (/) ) ) |
| 19 | 7 18 | anbi12d | |- ( ph -> ( ( C e. ( Met ` X ) /\ A. f e. ( CauFil ` C ) ( ( MetOpen ` C ) fLim f ) =/= (/) ) <-> ( D e. ( Met ` X ) /\ A. f e. ( CauFil ` D ) ( ( MetOpen ` D ) fLim f ) =/= (/) ) ) ) |
| 20 | 11 | iscmet | |- ( C e. ( CMet ` X ) <-> ( C e. ( Met ` X ) /\ A. f e. ( CauFil ` C ) ( ( MetOpen ` C ) fLim f ) =/= (/) ) ) |
| 21 | 12 | iscmet | |- ( D e. ( CMet ` X ) <-> ( D e. ( Met ` X ) /\ A. f e. ( CauFil ` D ) ( ( MetOpen ` D ) fLim f ) =/= (/) ) ) |
| 22 | 19 20 21 | 3bitr4g | |- ( ph -> ( C e. ( CMet ` X ) <-> D e. ( CMet ` X ) ) ) |