This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the metric D is "strongly finer" than C (meaning that there is a positive real constant R such that C ( x , y ) <_ R x. D ( x , y ) ), all the D -Cauchy sequences are also C -Cauchy. (Using this theorem twice in each direction states that if two metrics are strongly equivalent, then they have the same Cauchy sequences.) (Contributed by Mario Carneiro, 14-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | equivcau.1 | ⊢ ( 𝜑 → 𝐶 ∈ ( Met ‘ 𝑋 ) ) | |
| equivcau.2 | ⊢ ( 𝜑 → 𝐷 ∈ ( Met ‘ 𝑋 ) ) | ||
| equivcau.3 | ⊢ ( 𝜑 → 𝑅 ∈ ℝ+ ) | ||
| equivcau.4 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑥 𝐶 𝑦 ) ≤ ( 𝑅 · ( 𝑥 𝐷 𝑦 ) ) ) | ||
| Assertion | equivcau | ⊢ ( 𝜑 → ( Cau ‘ 𝐷 ) ⊆ ( Cau ‘ 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | equivcau.1 | ⊢ ( 𝜑 → 𝐶 ∈ ( Met ‘ 𝑋 ) ) | |
| 2 | equivcau.2 | ⊢ ( 𝜑 → 𝐷 ∈ ( Met ‘ 𝑋 ) ) | |
| 3 | equivcau.3 | ⊢ ( 𝜑 → 𝑅 ∈ ℝ+ ) | |
| 4 | equivcau.4 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑥 𝐶 𝑦 ) ≤ ( 𝑅 · ( 𝑥 𝐷 𝑦 ) ) ) | |
| 5 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 ↑pm ℂ ) ) ∧ 𝑟 ∈ ℝ+ ) → 𝑟 ∈ ℝ+ ) | |
| 6 | 3 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 ↑pm ℂ ) ) ∧ 𝑟 ∈ ℝ+ ) → 𝑅 ∈ ℝ+ ) |
| 7 | 5 6 | rpdivcld | ⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 ↑pm ℂ ) ) ∧ 𝑟 ∈ ℝ+ ) → ( 𝑟 / 𝑅 ) ∈ ℝ+ ) |
| 8 | oveq2 | ⊢ ( 𝑠 = ( 𝑟 / 𝑅 ) → ( ( 𝑓 ‘ 𝑘 ) ( ball ‘ 𝐷 ) 𝑠 ) = ( ( 𝑓 ‘ 𝑘 ) ( ball ‘ 𝐷 ) ( 𝑟 / 𝑅 ) ) ) | |
| 9 | 8 | feq3d | ⊢ ( 𝑠 = ( 𝑟 / 𝑅 ) → ( ( 𝑓 ↾ ( ℤ≥ ‘ 𝑘 ) ) : ( ℤ≥ ‘ 𝑘 ) ⟶ ( ( 𝑓 ‘ 𝑘 ) ( ball ‘ 𝐷 ) 𝑠 ) ↔ ( 𝑓 ↾ ( ℤ≥ ‘ 𝑘 ) ) : ( ℤ≥ ‘ 𝑘 ) ⟶ ( ( 𝑓 ‘ 𝑘 ) ( ball ‘ 𝐷 ) ( 𝑟 / 𝑅 ) ) ) ) |
| 10 | 9 | rexbidv | ⊢ ( 𝑠 = ( 𝑟 / 𝑅 ) → ( ∃ 𝑘 ∈ ℤ ( 𝑓 ↾ ( ℤ≥ ‘ 𝑘 ) ) : ( ℤ≥ ‘ 𝑘 ) ⟶ ( ( 𝑓 ‘ 𝑘 ) ( ball ‘ 𝐷 ) 𝑠 ) ↔ ∃ 𝑘 ∈ ℤ ( 𝑓 ↾ ( ℤ≥ ‘ 𝑘 ) ) : ( ℤ≥ ‘ 𝑘 ) ⟶ ( ( 𝑓 ‘ 𝑘 ) ( ball ‘ 𝐷 ) ( 𝑟 / 𝑅 ) ) ) ) |
| 11 | 10 | rspcv | ⊢ ( ( 𝑟 / 𝑅 ) ∈ ℝ+ → ( ∀ 𝑠 ∈ ℝ+ ∃ 𝑘 ∈ ℤ ( 𝑓 ↾ ( ℤ≥ ‘ 𝑘 ) ) : ( ℤ≥ ‘ 𝑘 ) ⟶ ( ( 𝑓 ‘ 𝑘 ) ( ball ‘ 𝐷 ) 𝑠 ) → ∃ 𝑘 ∈ ℤ ( 𝑓 ↾ ( ℤ≥ ‘ 𝑘 ) ) : ( ℤ≥ ‘ 𝑘 ) ⟶ ( ( 𝑓 ‘ 𝑘 ) ( ball ‘ 𝐷 ) ( 𝑟 / 𝑅 ) ) ) ) |
| 12 | 7 11 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 ↑pm ℂ ) ) ∧ 𝑟 ∈ ℝ+ ) → ( ∀ 𝑠 ∈ ℝ+ ∃ 𝑘 ∈ ℤ ( 𝑓 ↾ ( ℤ≥ ‘ 𝑘 ) ) : ( ℤ≥ ‘ 𝑘 ) ⟶ ( ( 𝑓 ‘ 𝑘 ) ( ball ‘ 𝐷 ) 𝑠 ) → ∃ 𝑘 ∈ ℤ ( 𝑓 ↾ ( ℤ≥ ‘ 𝑘 ) ) : ( ℤ≥ ‘ 𝑘 ) ⟶ ( ( 𝑓 ‘ 𝑘 ) ( ball ‘ 𝐷 ) ( 𝑟 / 𝑅 ) ) ) ) |
| 13 | simprr | ⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 ↑pm ℂ ) ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℤ ∧ ( 𝑓 ↾ ( ℤ≥ ‘ 𝑘 ) ) : ( ℤ≥ ‘ 𝑘 ) ⟶ ( ( 𝑓 ‘ 𝑘 ) ( ball ‘ 𝐷 ) ( 𝑟 / 𝑅 ) ) ) ) → ( 𝑓 ↾ ( ℤ≥ ‘ 𝑘 ) ) : ( ℤ≥ ‘ 𝑘 ) ⟶ ( ( 𝑓 ‘ 𝑘 ) ( ball ‘ 𝐷 ) ( 𝑟 / 𝑅 ) ) ) | |
| 14 | elpmi | ⊢ ( 𝑓 ∈ ( 𝑋 ↑pm ℂ ) → ( 𝑓 : dom 𝑓 ⟶ 𝑋 ∧ dom 𝑓 ⊆ ℂ ) ) | |
| 15 | 14 | simpld | ⊢ ( 𝑓 ∈ ( 𝑋 ↑pm ℂ ) → 𝑓 : dom 𝑓 ⟶ 𝑋 ) |
| 16 | 15 | ad3antlr | ⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 ↑pm ℂ ) ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℤ ∧ ( 𝑓 ↾ ( ℤ≥ ‘ 𝑘 ) ) : ( ℤ≥ ‘ 𝑘 ) ⟶ ( ( 𝑓 ‘ 𝑘 ) ( ball ‘ 𝐷 ) ( 𝑟 / 𝑅 ) ) ) ) → 𝑓 : dom 𝑓 ⟶ 𝑋 ) |
| 17 | resss | ⊢ ( 𝑓 ↾ ( ℤ≥ ‘ 𝑘 ) ) ⊆ 𝑓 | |
| 18 | dmss | ⊢ ( ( 𝑓 ↾ ( ℤ≥ ‘ 𝑘 ) ) ⊆ 𝑓 → dom ( 𝑓 ↾ ( ℤ≥ ‘ 𝑘 ) ) ⊆ dom 𝑓 ) | |
| 19 | 17 18 | ax-mp | ⊢ dom ( 𝑓 ↾ ( ℤ≥ ‘ 𝑘 ) ) ⊆ dom 𝑓 |
| 20 | uzid | ⊢ ( 𝑘 ∈ ℤ → 𝑘 ∈ ( ℤ≥ ‘ 𝑘 ) ) | |
| 21 | 20 | ad2antrl | ⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 ↑pm ℂ ) ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℤ ∧ ( 𝑓 ↾ ( ℤ≥ ‘ 𝑘 ) ) : ( ℤ≥ ‘ 𝑘 ) ⟶ ( ( 𝑓 ‘ 𝑘 ) ( ball ‘ 𝐷 ) ( 𝑟 / 𝑅 ) ) ) ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑘 ) ) |
| 22 | fdm | ⊢ ( ( 𝑓 ↾ ( ℤ≥ ‘ 𝑘 ) ) : ( ℤ≥ ‘ 𝑘 ) ⟶ ( ( 𝑓 ‘ 𝑘 ) ( ball ‘ 𝐷 ) ( 𝑟 / 𝑅 ) ) → dom ( 𝑓 ↾ ( ℤ≥ ‘ 𝑘 ) ) = ( ℤ≥ ‘ 𝑘 ) ) | |
| 23 | 22 | ad2antll | ⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 ↑pm ℂ ) ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℤ ∧ ( 𝑓 ↾ ( ℤ≥ ‘ 𝑘 ) ) : ( ℤ≥ ‘ 𝑘 ) ⟶ ( ( 𝑓 ‘ 𝑘 ) ( ball ‘ 𝐷 ) ( 𝑟 / 𝑅 ) ) ) ) → dom ( 𝑓 ↾ ( ℤ≥ ‘ 𝑘 ) ) = ( ℤ≥ ‘ 𝑘 ) ) |
| 24 | 21 23 | eleqtrrd | ⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 ↑pm ℂ ) ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℤ ∧ ( 𝑓 ↾ ( ℤ≥ ‘ 𝑘 ) ) : ( ℤ≥ ‘ 𝑘 ) ⟶ ( ( 𝑓 ‘ 𝑘 ) ( ball ‘ 𝐷 ) ( 𝑟 / 𝑅 ) ) ) ) → 𝑘 ∈ dom ( 𝑓 ↾ ( ℤ≥ ‘ 𝑘 ) ) ) |
| 25 | 19 24 | sselid | ⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 ↑pm ℂ ) ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℤ ∧ ( 𝑓 ↾ ( ℤ≥ ‘ 𝑘 ) ) : ( ℤ≥ ‘ 𝑘 ) ⟶ ( ( 𝑓 ‘ 𝑘 ) ( ball ‘ 𝐷 ) ( 𝑟 / 𝑅 ) ) ) ) → 𝑘 ∈ dom 𝑓 ) |
| 26 | 16 25 | ffvelcdmd | ⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 ↑pm ℂ ) ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℤ ∧ ( 𝑓 ↾ ( ℤ≥ ‘ 𝑘 ) ) : ( ℤ≥ ‘ 𝑘 ) ⟶ ( ( 𝑓 ‘ 𝑘 ) ( ball ‘ 𝐷 ) ( 𝑟 / 𝑅 ) ) ) ) → ( 𝑓 ‘ 𝑘 ) ∈ 𝑋 ) |
| 27 | eqid | ⊢ ( MetOpen ‘ 𝐶 ) = ( MetOpen ‘ 𝐶 ) | |
| 28 | eqid | ⊢ ( MetOpen ‘ 𝐷 ) = ( MetOpen ‘ 𝐷 ) | |
| 29 | 27 28 1 2 3 4 | metss2lem | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+ ) ) → ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / 𝑅 ) ) ⊆ ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) ) |
| 30 | 29 | expr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑟 ∈ ℝ+ → ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / 𝑅 ) ) ⊆ ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) ) ) |
| 31 | 30 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑋 ( 𝑟 ∈ ℝ+ → ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / 𝑅 ) ) ⊆ ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) ) ) |
| 32 | 31 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 ↑pm ℂ ) ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℤ ∧ ( 𝑓 ↾ ( ℤ≥ ‘ 𝑘 ) ) : ( ℤ≥ ‘ 𝑘 ) ⟶ ( ( 𝑓 ‘ 𝑘 ) ( ball ‘ 𝐷 ) ( 𝑟 / 𝑅 ) ) ) ) → ∀ 𝑥 ∈ 𝑋 ( 𝑟 ∈ ℝ+ → ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / 𝑅 ) ) ⊆ ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) ) ) |
| 33 | simplr | ⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 ↑pm ℂ ) ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℤ ∧ ( 𝑓 ↾ ( ℤ≥ ‘ 𝑘 ) ) : ( ℤ≥ ‘ 𝑘 ) ⟶ ( ( 𝑓 ‘ 𝑘 ) ( ball ‘ 𝐷 ) ( 𝑟 / 𝑅 ) ) ) ) → 𝑟 ∈ ℝ+ ) | |
| 34 | oveq1 | ⊢ ( 𝑥 = ( 𝑓 ‘ 𝑘 ) → ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / 𝑅 ) ) = ( ( 𝑓 ‘ 𝑘 ) ( ball ‘ 𝐷 ) ( 𝑟 / 𝑅 ) ) ) | |
| 35 | oveq1 | ⊢ ( 𝑥 = ( 𝑓 ‘ 𝑘 ) → ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) = ( ( 𝑓 ‘ 𝑘 ) ( ball ‘ 𝐶 ) 𝑟 ) ) | |
| 36 | 34 35 | sseq12d | ⊢ ( 𝑥 = ( 𝑓 ‘ 𝑘 ) → ( ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / 𝑅 ) ) ⊆ ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) ↔ ( ( 𝑓 ‘ 𝑘 ) ( ball ‘ 𝐷 ) ( 𝑟 / 𝑅 ) ) ⊆ ( ( 𝑓 ‘ 𝑘 ) ( ball ‘ 𝐶 ) 𝑟 ) ) ) |
| 37 | 36 | imbi2d | ⊢ ( 𝑥 = ( 𝑓 ‘ 𝑘 ) → ( ( 𝑟 ∈ ℝ+ → ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / 𝑅 ) ) ⊆ ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) ) ↔ ( 𝑟 ∈ ℝ+ → ( ( 𝑓 ‘ 𝑘 ) ( ball ‘ 𝐷 ) ( 𝑟 / 𝑅 ) ) ⊆ ( ( 𝑓 ‘ 𝑘 ) ( ball ‘ 𝐶 ) 𝑟 ) ) ) ) |
| 38 | 37 | rspcv | ⊢ ( ( 𝑓 ‘ 𝑘 ) ∈ 𝑋 → ( ∀ 𝑥 ∈ 𝑋 ( 𝑟 ∈ ℝ+ → ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / 𝑅 ) ) ⊆ ( 𝑥 ( ball ‘ 𝐶 ) 𝑟 ) ) → ( 𝑟 ∈ ℝ+ → ( ( 𝑓 ‘ 𝑘 ) ( ball ‘ 𝐷 ) ( 𝑟 / 𝑅 ) ) ⊆ ( ( 𝑓 ‘ 𝑘 ) ( ball ‘ 𝐶 ) 𝑟 ) ) ) ) |
| 39 | 26 32 33 38 | syl3c | ⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 ↑pm ℂ ) ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℤ ∧ ( 𝑓 ↾ ( ℤ≥ ‘ 𝑘 ) ) : ( ℤ≥ ‘ 𝑘 ) ⟶ ( ( 𝑓 ‘ 𝑘 ) ( ball ‘ 𝐷 ) ( 𝑟 / 𝑅 ) ) ) ) → ( ( 𝑓 ‘ 𝑘 ) ( ball ‘ 𝐷 ) ( 𝑟 / 𝑅 ) ) ⊆ ( ( 𝑓 ‘ 𝑘 ) ( ball ‘ 𝐶 ) 𝑟 ) ) |
| 40 | 13 39 | fssd | ⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 ↑pm ℂ ) ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℤ ∧ ( 𝑓 ↾ ( ℤ≥ ‘ 𝑘 ) ) : ( ℤ≥ ‘ 𝑘 ) ⟶ ( ( 𝑓 ‘ 𝑘 ) ( ball ‘ 𝐷 ) ( 𝑟 / 𝑅 ) ) ) ) → ( 𝑓 ↾ ( ℤ≥ ‘ 𝑘 ) ) : ( ℤ≥ ‘ 𝑘 ) ⟶ ( ( 𝑓 ‘ 𝑘 ) ( ball ‘ 𝐶 ) 𝑟 ) ) |
| 41 | 40 | expr | ⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 ↑pm ℂ ) ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑘 ∈ ℤ ) → ( ( 𝑓 ↾ ( ℤ≥ ‘ 𝑘 ) ) : ( ℤ≥ ‘ 𝑘 ) ⟶ ( ( 𝑓 ‘ 𝑘 ) ( ball ‘ 𝐷 ) ( 𝑟 / 𝑅 ) ) → ( 𝑓 ↾ ( ℤ≥ ‘ 𝑘 ) ) : ( ℤ≥ ‘ 𝑘 ) ⟶ ( ( 𝑓 ‘ 𝑘 ) ( ball ‘ 𝐶 ) 𝑟 ) ) ) |
| 42 | 41 | reximdva | ⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 ↑pm ℂ ) ) ∧ 𝑟 ∈ ℝ+ ) → ( ∃ 𝑘 ∈ ℤ ( 𝑓 ↾ ( ℤ≥ ‘ 𝑘 ) ) : ( ℤ≥ ‘ 𝑘 ) ⟶ ( ( 𝑓 ‘ 𝑘 ) ( ball ‘ 𝐷 ) ( 𝑟 / 𝑅 ) ) → ∃ 𝑘 ∈ ℤ ( 𝑓 ↾ ( ℤ≥ ‘ 𝑘 ) ) : ( ℤ≥ ‘ 𝑘 ) ⟶ ( ( 𝑓 ‘ 𝑘 ) ( ball ‘ 𝐶 ) 𝑟 ) ) ) |
| 43 | 12 42 | syld | ⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 ↑pm ℂ ) ) ∧ 𝑟 ∈ ℝ+ ) → ( ∀ 𝑠 ∈ ℝ+ ∃ 𝑘 ∈ ℤ ( 𝑓 ↾ ( ℤ≥ ‘ 𝑘 ) ) : ( ℤ≥ ‘ 𝑘 ) ⟶ ( ( 𝑓 ‘ 𝑘 ) ( ball ‘ 𝐷 ) 𝑠 ) → ∃ 𝑘 ∈ ℤ ( 𝑓 ↾ ( ℤ≥ ‘ 𝑘 ) ) : ( ℤ≥ ‘ 𝑘 ) ⟶ ( ( 𝑓 ‘ 𝑘 ) ( ball ‘ 𝐶 ) 𝑟 ) ) ) |
| 44 | 43 | ralrimdva | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 ↑pm ℂ ) ) → ( ∀ 𝑠 ∈ ℝ+ ∃ 𝑘 ∈ ℤ ( 𝑓 ↾ ( ℤ≥ ‘ 𝑘 ) ) : ( ℤ≥ ‘ 𝑘 ) ⟶ ( ( 𝑓 ‘ 𝑘 ) ( ball ‘ 𝐷 ) 𝑠 ) → ∀ 𝑟 ∈ ℝ+ ∃ 𝑘 ∈ ℤ ( 𝑓 ↾ ( ℤ≥ ‘ 𝑘 ) ) : ( ℤ≥ ‘ 𝑘 ) ⟶ ( ( 𝑓 ‘ 𝑘 ) ( ball ‘ 𝐶 ) 𝑟 ) ) ) |
| 45 | 44 | ss2rabdv | ⊢ ( 𝜑 → { 𝑓 ∈ ( 𝑋 ↑pm ℂ ) ∣ ∀ 𝑠 ∈ ℝ+ ∃ 𝑘 ∈ ℤ ( 𝑓 ↾ ( ℤ≥ ‘ 𝑘 ) ) : ( ℤ≥ ‘ 𝑘 ) ⟶ ( ( 𝑓 ‘ 𝑘 ) ( ball ‘ 𝐷 ) 𝑠 ) } ⊆ { 𝑓 ∈ ( 𝑋 ↑pm ℂ ) ∣ ∀ 𝑟 ∈ ℝ+ ∃ 𝑘 ∈ ℤ ( 𝑓 ↾ ( ℤ≥ ‘ 𝑘 ) ) : ( ℤ≥ ‘ 𝑘 ) ⟶ ( ( 𝑓 ‘ 𝑘 ) ( ball ‘ 𝐶 ) 𝑟 ) } ) |
| 46 | metxmet | ⊢ ( 𝐷 ∈ ( Met ‘ 𝑋 ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) | |
| 47 | caufval | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( Cau ‘ 𝐷 ) = { 𝑓 ∈ ( 𝑋 ↑pm ℂ ) ∣ ∀ 𝑠 ∈ ℝ+ ∃ 𝑘 ∈ ℤ ( 𝑓 ↾ ( ℤ≥ ‘ 𝑘 ) ) : ( ℤ≥ ‘ 𝑘 ) ⟶ ( ( 𝑓 ‘ 𝑘 ) ( ball ‘ 𝐷 ) 𝑠 ) } ) | |
| 48 | 2 46 47 | 3syl | ⊢ ( 𝜑 → ( Cau ‘ 𝐷 ) = { 𝑓 ∈ ( 𝑋 ↑pm ℂ ) ∣ ∀ 𝑠 ∈ ℝ+ ∃ 𝑘 ∈ ℤ ( 𝑓 ↾ ( ℤ≥ ‘ 𝑘 ) ) : ( ℤ≥ ‘ 𝑘 ) ⟶ ( ( 𝑓 ‘ 𝑘 ) ( ball ‘ 𝐷 ) 𝑠 ) } ) |
| 49 | metxmet | ⊢ ( 𝐶 ∈ ( Met ‘ 𝑋 ) → 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ) | |
| 50 | caufval | ⊢ ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) → ( Cau ‘ 𝐶 ) = { 𝑓 ∈ ( 𝑋 ↑pm ℂ ) ∣ ∀ 𝑟 ∈ ℝ+ ∃ 𝑘 ∈ ℤ ( 𝑓 ↾ ( ℤ≥ ‘ 𝑘 ) ) : ( ℤ≥ ‘ 𝑘 ) ⟶ ( ( 𝑓 ‘ 𝑘 ) ( ball ‘ 𝐶 ) 𝑟 ) } ) | |
| 51 | 1 49 50 | 3syl | ⊢ ( 𝜑 → ( Cau ‘ 𝐶 ) = { 𝑓 ∈ ( 𝑋 ↑pm ℂ ) ∣ ∀ 𝑟 ∈ ℝ+ ∃ 𝑘 ∈ ℤ ( 𝑓 ↾ ( ℤ≥ ‘ 𝑘 ) ) : ( ℤ≥ ‘ 𝑘 ) ⟶ ( ( 𝑓 ‘ 𝑘 ) ( ball ‘ 𝐶 ) 𝑟 ) } ) |
| 52 | 45 48 51 | 3sstr4d | ⊢ ( 𝜑 → ( Cau ‘ 𝐷 ) ⊆ ( Cau ‘ 𝐶 ) ) |