This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the metric D is "strongly finer" than C (meaning that there is a positive real constant R such that C ( x , y ) <_ R x. D ( x , y ) ), all the D -Cauchy filters are also C -Cauchy. (Using this theorem twice in each direction states that if two metrics are strongly equivalent, then they have the same Cauchy sequences.) (Contributed by Mario Carneiro, 14-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | equivcau.1 | |- ( ph -> C e. ( Met ` X ) ) |
|
| equivcau.2 | |- ( ph -> D e. ( Met ` X ) ) |
||
| equivcau.3 | |- ( ph -> R e. RR+ ) |
||
| equivcau.4 | |- ( ( ph /\ ( x e. X /\ y e. X ) ) -> ( x C y ) <_ ( R x. ( x D y ) ) ) |
||
| Assertion | equivcfil | |- ( ph -> ( CauFil ` D ) C_ ( CauFil ` C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | equivcau.1 | |- ( ph -> C e. ( Met ` X ) ) |
|
| 2 | equivcau.2 | |- ( ph -> D e. ( Met ` X ) ) |
|
| 3 | equivcau.3 | |- ( ph -> R e. RR+ ) |
|
| 4 | equivcau.4 | |- ( ( ph /\ ( x e. X /\ y e. X ) ) -> ( x C y ) <_ ( R x. ( x D y ) ) ) |
|
| 5 | simpr | |- ( ( ( ph /\ f e. ( Fil ` X ) ) /\ r e. RR+ ) -> r e. RR+ ) |
|
| 6 | 3 | ad2antrr | |- ( ( ( ph /\ f e. ( Fil ` X ) ) /\ r e. RR+ ) -> R e. RR+ ) |
| 7 | 5 6 | rpdivcld | |- ( ( ( ph /\ f e. ( Fil ` X ) ) /\ r e. RR+ ) -> ( r / R ) e. RR+ ) |
| 8 | oveq2 | |- ( s = ( r / R ) -> ( x ( ball ` D ) s ) = ( x ( ball ` D ) ( r / R ) ) ) |
|
| 9 | 8 | eleq1d | |- ( s = ( r / R ) -> ( ( x ( ball ` D ) s ) e. f <-> ( x ( ball ` D ) ( r / R ) ) e. f ) ) |
| 10 | 9 | rexbidv | |- ( s = ( r / R ) -> ( E. x e. X ( x ( ball ` D ) s ) e. f <-> E. x e. X ( x ( ball ` D ) ( r / R ) ) e. f ) ) |
| 11 | 10 | rspcv | |- ( ( r / R ) e. RR+ -> ( A. s e. RR+ E. x e. X ( x ( ball ` D ) s ) e. f -> E. x e. X ( x ( ball ` D ) ( r / R ) ) e. f ) ) |
| 12 | 7 11 | syl | |- ( ( ( ph /\ f e. ( Fil ` X ) ) /\ r e. RR+ ) -> ( A. s e. RR+ E. x e. X ( x ( ball ` D ) s ) e. f -> E. x e. X ( x ( ball ` D ) ( r / R ) ) e. f ) ) |
| 13 | simpllr | |- ( ( ( ( ph /\ f e. ( Fil ` X ) ) /\ r e. RR+ ) /\ x e. X ) -> f e. ( Fil ` X ) ) |
|
| 14 | eqid | |- ( MetOpen ` C ) = ( MetOpen ` C ) |
|
| 15 | eqid | |- ( MetOpen ` D ) = ( MetOpen ` D ) |
|
| 16 | 14 15 1 2 3 4 | metss2lem | |- ( ( ph /\ ( x e. X /\ r e. RR+ ) ) -> ( x ( ball ` D ) ( r / R ) ) C_ ( x ( ball ` C ) r ) ) |
| 17 | 16 | ancom2s | |- ( ( ph /\ ( r e. RR+ /\ x e. X ) ) -> ( x ( ball ` D ) ( r / R ) ) C_ ( x ( ball ` C ) r ) ) |
| 18 | 17 | adantlr | |- ( ( ( ph /\ f e. ( Fil ` X ) ) /\ ( r e. RR+ /\ x e. X ) ) -> ( x ( ball ` D ) ( r / R ) ) C_ ( x ( ball ` C ) r ) ) |
| 19 | 18 | anassrs | |- ( ( ( ( ph /\ f e. ( Fil ` X ) ) /\ r e. RR+ ) /\ x e. X ) -> ( x ( ball ` D ) ( r / R ) ) C_ ( x ( ball ` C ) r ) ) |
| 20 | 1 | ad3antrrr | |- ( ( ( ( ph /\ f e. ( Fil ` X ) ) /\ r e. RR+ ) /\ x e. X ) -> C e. ( Met ` X ) ) |
| 21 | metxmet | |- ( C e. ( Met ` X ) -> C e. ( *Met ` X ) ) |
|
| 22 | 20 21 | syl | |- ( ( ( ( ph /\ f e. ( Fil ` X ) ) /\ r e. RR+ ) /\ x e. X ) -> C e. ( *Met ` X ) ) |
| 23 | simpr | |- ( ( ( ( ph /\ f e. ( Fil ` X ) ) /\ r e. RR+ ) /\ x e. X ) -> x e. X ) |
|
| 24 | rpxr | |- ( r e. RR+ -> r e. RR* ) |
|
| 25 | 24 | ad2antlr | |- ( ( ( ( ph /\ f e. ( Fil ` X ) ) /\ r e. RR+ ) /\ x e. X ) -> r e. RR* ) |
| 26 | blssm | |- ( ( C e. ( *Met ` X ) /\ x e. X /\ r e. RR* ) -> ( x ( ball ` C ) r ) C_ X ) |
|
| 27 | 22 23 25 26 | syl3anc | |- ( ( ( ( ph /\ f e. ( Fil ` X ) ) /\ r e. RR+ ) /\ x e. X ) -> ( x ( ball ` C ) r ) C_ X ) |
| 28 | filss | |- ( ( f e. ( Fil ` X ) /\ ( ( x ( ball ` D ) ( r / R ) ) e. f /\ ( x ( ball ` C ) r ) C_ X /\ ( x ( ball ` D ) ( r / R ) ) C_ ( x ( ball ` C ) r ) ) ) -> ( x ( ball ` C ) r ) e. f ) |
|
| 29 | 28 | 3exp2 | |- ( f e. ( Fil ` X ) -> ( ( x ( ball ` D ) ( r / R ) ) e. f -> ( ( x ( ball ` C ) r ) C_ X -> ( ( x ( ball ` D ) ( r / R ) ) C_ ( x ( ball ` C ) r ) -> ( x ( ball ` C ) r ) e. f ) ) ) ) |
| 30 | 29 | com24 | |- ( f e. ( Fil ` X ) -> ( ( x ( ball ` D ) ( r / R ) ) C_ ( x ( ball ` C ) r ) -> ( ( x ( ball ` C ) r ) C_ X -> ( ( x ( ball ` D ) ( r / R ) ) e. f -> ( x ( ball ` C ) r ) e. f ) ) ) ) |
| 31 | 13 19 27 30 | syl3c | |- ( ( ( ( ph /\ f e. ( Fil ` X ) ) /\ r e. RR+ ) /\ x e. X ) -> ( ( x ( ball ` D ) ( r / R ) ) e. f -> ( x ( ball ` C ) r ) e. f ) ) |
| 32 | 31 | reximdva | |- ( ( ( ph /\ f e. ( Fil ` X ) ) /\ r e. RR+ ) -> ( E. x e. X ( x ( ball ` D ) ( r / R ) ) e. f -> E. x e. X ( x ( ball ` C ) r ) e. f ) ) |
| 33 | 12 32 | syld | |- ( ( ( ph /\ f e. ( Fil ` X ) ) /\ r e. RR+ ) -> ( A. s e. RR+ E. x e. X ( x ( ball ` D ) s ) e. f -> E. x e. X ( x ( ball ` C ) r ) e. f ) ) |
| 34 | 33 | ralrimdva | |- ( ( ph /\ f e. ( Fil ` X ) ) -> ( A. s e. RR+ E. x e. X ( x ( ball ` D ) s ) e. f -> A. r e. RR+ E. x e. X ( x ( ball ` C ) r ) e. f ) ) |
| 35 | 34 | imdistanda | |- ( ph -> ( ( f e. ( Fil ` X ) /\ A. s e. RR+ E. x e. X ( x ( ball ` D ) s ) e. f ) -> ( f e. ( Fil ` X ) /\ A. r e. RR+ E. x e. X ( x ( ball ` C ) r ) e. f ) ) ) |
| 36 | metxmet | |- ( D e. ( Met ` X ) -> D e. ( *Met ` X ) ) |
|
| 37 | iscfil3 | |- ( D e. ( *Met ` X ) -> ( f e. ( CauFil ` D ) <-> ( f e. ( Fil ` X ) /\ A. s e. RR+ E. x e. X ( x ( ball ` D ) s ) e. f ) ) ) |
|
| 38 | 2 36 37 | 3syl | |- ( ph -> ( f e. ( CauFil ` D ) <-> ( f e. ( Fil ` X ) /\ A. s e. RR+ E. x e. X ( x ( ball ` D ) s ) e. f ) ) ) |
| 39 | iscfil3 | |- ( C e. ( *Met ` X ) -> ( f e. ( CauFil ` C ) <-> ( f e. ( Fil ` X ) /\ A. r e. RR+ E. x e. X ( x ( ball ` C ) r ) e. f ) ) ) |
|
| 40 | 1 21 39 | 3syl | |- ( ph -> ( f e. ( CauFil ` C ) <-> ( f e. ( Fil ` X ) /\ A. r e. RR+ E. x e. X ( x ( ball ` C ) r ) e. f ) ) ) |
| 41 | 35 38 40 | 3imtr4d | |- ( ph -> ( f e. ( CauFil ` D ) -> f e. ( CauFil ` C ) ) ) |
| 42 | 41 | ssrdv | |- ( ph -> ( CauFil ` D ) C_ ( CauFil ` C ) ) |