This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A left coset can be expressed as the image of a left action. (Contributed by Mario Carneiro, 20-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eqger.x | |- X = ( Base ` G ) |
|
| eqger.r | |- .~ = ( G ~QG Y ) |
||
| eqglact.3 | |- .+ = ( +g ` G ) |
||
| Assertion | eqglact | |- ( ( G e. Grp /\ Y C_ X /\ A e. X ) -> [ A ] .~ = ( ( x e. X |-> ( A .+ x ) ) " Y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqger.x | |- X = ( Base ` G ) |
|
| 2 | eqger.r | |- .~ = ( G ~QG Y ) |
|
| 3 | eqglact.3 | |- .+ = ( +g ` G ) |
|
| 4 | eqid | |- ( invg ` G ) = ( invg ` G ) |
|
| 5 | 1 4 3 2 | eqgval | |- ( ( G e. Grp /\ Y C_ X ) -> ( A .~ x <-> ( A e. X /\ x e. X /\ ( ( ( invg ` G ) ` A ) .+ x ) e. Y ) ) ) |
| 6 | 3anass | |- ( ( A e. X /\ x e. X /\ ( ( ( invg ` G ) ` A ) .+ x ) e. Y ) <-> ( A e. X /\ ( x e. X /\ ( ( ( invg ` G ) ` A ) .+ x ) e. Y ) ) ) |
|
| 7 | 5 6 | bitrdi | |- ( ( G e. Grp /\ Y C_ X ) -> ( A .~ x <-> ( A e. X /\ ( x e. X /\ ( ( ( invg ` G ) ` A ) .+ x ) e. Y ) ) ) ) |
| 8 | 7 | baibd | |- ( ( ( G e. Grp /\ Y C_ X ) /\ A e. X ) -> ( A .~ x <-> ( x e. X /\ ( ( ( invg ` G ) ` A ) .+ x ) e. Y ) ) ) |
| 9 | 8 | 3impa | |- ( ( G e. Grp /\ Y C_ X /\ A e. X ) -> ( A .~ x <-> ( x e. X /\ ( ( ( invg ` G ) ` A ) .+ x ) e. Y ) ) ) |
| 10 | 9 | abbidv | |- ( ( G e. Grp /\ Y C_ X /\ A e. X ) -> { x | A .~ x } = { x | ( x e. X /\ ( ( ( invg ` G ) ` A ) .+ x ) e. Y ) } ) |
| 11 | dfec2 | |- ( A e. X -> [ A ] .~ = { x | A .~ x } ) |
|
| 12 | 11 | 3ad2ant3 | |- ( ( G e. Grp /\ Y C_ X /\ A e. X ) -> [ A ] .~ = { x | A .~ x } ) |
| 13 | eqid | |- ( g e. X |-> ( x e. X |-> ( g .+ x ) ) ) = ( g e. X |-> ( x e. X |-> ( g .+ x ) ) ) |
|
| 14 | 13 1 3 4 | grplactcnv | |- ( ( G e. Grp /\ A e. X ) -> ( ( ( g e. X |-> ( x e. X |-> ( g .+ x ) ) ) ` A ) : X -1-1-onto-> X /\ `' ( ( g e. X |-> ( x e. X |-> ( g .+ x ) ) ) ` A ) = ( ( g e. X |-> ( x e. X |-> ( g .+ x ) ) ) ` ( ( invg ` G ) ` A ) ) ) ) |
| 15 | 14 | simprd | |- ( ( G e. Grp /\ A e. X ) -> `' ( ( g e. X |-> ( x e. X |-> ( g .+ x ) ) ) ` A ) = ( ( g e. X |-> ( x e. X |-> ( g .+ x ) ) ) ` ( ( invg ` G ) ` A ) ) ) |
| 16 | 13 1 | grplactfval | |- ( A e. X -> ( ( g e. X |-> ( x e. X |-> ( g .+ x ) ) ) ` A ) = ( x e. X |-> ( A .+ x ) ) ) |
| 17 | 16 | adantl | |- ( ( G e. Grp /\ A e. X ) -> ( ( g e. X |-> ( x e. X |-> ( g .+ x ) ) ) ` A ) = ( x e. X |-> ( A .+ x ) ) ) |
| 18 | 17 | cnveqd | |- ( ( G e. Grp /\ A e. X ) -> `' ( ( g e. X |-> ( x e. X |-> ( g .+ x ) ) ) ` A ) = `' ( x e. X |-> ( A .+ x ) ) ) |
| 19 | 1 4 | grpinvcl | |- ( ( G e. Grp /\ A e. X ) -> ( ( invg ` G ) ` A ) e. X ) |
| 20 | 13 1 | grplactfval | |- ( ( ( invg ` G ) ` A ) e. X -> ( ( g e. X |-> ( x e. X |-> ( g .+ x ) ) ) ` ( ( invg ` G ) ` A ) ) = ( x e. X |-> ( ( ( invg ` G ) ` A ) .+ x ) ) ) |
| 21 | 19 20 | syl | |- ( ( G e. Grp /\ A e. X ) -> ( ( g e. X |-> ( x e. X |-> ( g .+ x ) ) ) ` ( ( invg ` G ) ` A ) ) = ( x e. X |-> ( ( ( invg ` G ) ` A ) .+ x ) ) ) |
| 22 | 15 18 21 | 3eqtr3d | |- ( ( G e. Grp /\ A e. X ) -> `' ( x e. X |-> ( A .+ x ) ) = ( x e. X |-> ( ( ( invg ` G ) ` A ) .+ x ) ) ) |
| 23 | 22 | cnveqd | |- ( ( G e. Grp /\ A e. X ) -> `' `' ( x e. X |-> ( A .+ x ) ) = `' ( x e. X |-> ( ( ( invg ` G ) ` A ) .+ x ) ) ) |
| 24 | 23 | 3adant2 | |- ( ( G e. Grp /\ Y C_ X /\ A e. X ) -> `' `' ( x e. X |-> ( A .+ x ) ) = `' ( x e. X |-> ( ( ( invg ` G ) ` A ) .+ x ) ) ) |
| 25 | 24 | imaeq1d | |- ( ( G e. Grp /\ Y C_ X /\ A e. X ) -> ( `' `' ( x e. X |-> ( A .+ x ) ) " Y ) = ( `' ( x e. X |-> ( ( ( invg ` G ) ` A ) .+ x ) ) " Y ) ) |
| 26 | imacnvcnv | |- ( `' `' ( x e. X |-> ( A .+ x ) ) " Y ) = ( ( x e. X |-> ( A .+ x ) ) " Y ) |
|
| 27 | eqid | |- ( x e. X |-> ( ( ( invg ` G ) ` A ) .+ x ) ) = ( x e. X |-> ( ( ( invg ` G ) ` A ) .+ x ) ) |
|
| 28 | 27 | mptpreima | |- ( `' ( x e. X |-> ( ( ( invg ` G ) ` A ) .+ x ) ) " Y ) = { x e. X | ( ( ( invg ` G ) ` A ) .+ x ) e. Y } |
| 29 | df-rab | |- { x e. X | ( ( ( invg ` G ) ` A ) .+ x ) e. Y } = { x | ( x e. X /\ ( ( ( invg ` G ) ` A ) .+ x ) e. Y ) } |
|
| 30 | 28 29 | eqtri | |- ( `' ( x e. X |-> ( ( ( invg ` G ) ` A ) .+ x ) ) " Y ) = { x | ( x e. X /\ ( ( ( invg ` G ) ` A ) .+ x ) e. Y ) } |
| 31 | 25 26 30 | 3eqtr3g | |- ( ( G e. Grp /\ Y C_ X /\ A e. X ) -> ( ( x e. X |-> ( A .+ x ) ) " Y ) = { x | ( x e. X /\ ( ( ( invg ` G ) ` A ) .+ x ) e. Y ) } ) |
| 32 | 10 12 31 | 3eqtr4d | |- ( ( G e. Grp /\ Y C_ X /\ A e. X ) -> [ A ] .~ = ( ( x e. X |-> ( A .+ x ) ) " Y ) ) |