This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Each coset is equipotent to the subgroup itself (which is also the coset containing the identity). (Contributed by Mario Carneiro, 20-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eqger.x | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| eqger.r | ⊢ ∼ = ( 𝐺 ~QG 𝑌 ) | ||
| Assertion | eqgen | ⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ ( 𝑋 / ∼ ) ) → 𝑌 ≈ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqger.x | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| 2 | eqger.r | ⊢ ∼ = ( 𝐺 ~QG 𝑌 ) | |
| 3 | eqid | ⊢ ( 𝑋 / ∼ ) = ( 𝑋 / ∼ ) | |
| 4 | breq2 | ⊢ ( [ 𝑥 ] ∼ = 𝐴 → ( 𝑌 ≈ [ 𝑥 ] ∼ ↔ 𝑌 ≈ 𝐴 ) ) | |
| 5 | simpl | ⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∈ 𝑋 ) → 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ) | |
| 6 | subgrcl | ⊢ ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) → 𝐺 ∈ Grp ) | |
| 7 | 1 | subgss | ⊢ ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) → 𝑌 ⊆ 𝑋 ) |
| 8 | 6 7 | jca | ⊢ ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) → ( 𝐺 ∈ Grp ∧ 𝑌 ⊆ 𝑋 ) ) |
| 9 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 10 | 1 2 9 | eqglact | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑌 ⊆ 𝑋 ∧ 𝑥 ∈ 𝑋 ) → [ 𝑥 ] ∼ = ( ( 𝑧 ∈ 𝑋 ↦ ( 𝑥 ( +g ‘ 𝐺 ) 𝑧 ) ) “ 𝑌 ) ) |
| 11 | 10 | 3expa | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑌 ⊆ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) → [ 𝑥 ] ∼ = ( ( 𝑧 ∈ 𝑋 ↦ ( 𝑥 ( +g ‘ 𝐺 ) 𝑧 ) ) “ 𝑌 ) ) |
| 12 | 8 11 | sylan | ⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∈ 𝑋 ) → [ 𝑥 ] ∼ = ( ( 𝑧 ∈ 𝑋 ↦ ( 𝑥 ( +g ‘ 𝐺 ) 𝑧 ) ) “ 𝑌 ) ) |
| 13 | 2 | ovexi | ⊢ ∼ ∈ V |
| 14 | ecexg | ⊢ ( ∼ ∈ V → [ 𝑥 ] ∼ ∈ V ) | |
| 15 | 13 14 | ax-mp | ⊢ [ 𝑥 ] ∼ ∈ V |
| 16 | 12 15 | eqeltrrdi | ⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑧 ∈ 𝑋 ↦ ( 𝑥 ( +g ‘ 𝐺 ) 𝑧 ) ) “ 𝑌 ) ∈ V ) |
| 17 | eqid | ⊢ ( 𝑦 ∈ 𝑋 ↦ ( 𝑧 ∈ 𝑋 ↦ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ) ) = ( 𝑦 ∈ 𝑋 ↦ ( 𝑧 ∈ 𝑋 ↦ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ) ) | |
| 18 | 17 1 9 | grplactf1o | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑦 ∈ 𝑋 ↦ ( 𝑧 ∈ 𝑋 ↦ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ) ) ‘ 𝑥 ) : 𝑋 –1-1-onto→ 𝑋 ) |
| 19 | 17 1 | grplactfval | ⊢ ( 𝑥 ∈ 𝑋 → ( ( 𝑦 ∈ 𝑋 ↦ ( 𝑧 ∈ 𝑋 ↦ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ) ) ‘ 𝑥 ) = ( 𝑧 ∈ 𝑋 ↦ ( 𝑥 ( +g ‘ 𝐺 ) 𝑧 ) ) ) |
| 20 | 19 | adantl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑦 ∈ 𝑋 ↦ ( 𝑧 ∈ 𝑋 ↦ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ) ) ‘ 𝑥 ) = ( 𝑧 ∈ 𝑋 ↦ ( 𝑥 ( +g ‘ 𝐺 ) 𝑧 ) ) ) |
| 21 | 20 | f1oeq1d | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋 ) → ( ( ( 𝑦 ∈ 𝑋 ↦ ( 𝑧 ∈ 𝑋 ↦ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ) ) ‘ 𝑥 ) : 𝑋 –1-1-onto→ 𝑋 ↔ ( 𝑧 ∈ 𝑋 ↦ ( 𝑥 ( +g ‘ 𝐺 ) 𝑧 ) ) : 𝑋 –1-1-onto→ 𝑋 ) ) |
| 22 | 18 21 | mpbid | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋 ) → ( 𝑧 ∈ 𝑋 ↦ ( 𝑥 ( +g ‘ 𝐺 ) 𝑧 ) ) : 𝑋 –1-1-onto→ 𝑋 ) |
| 23 | 6 22 | sylan | ⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝑧 ∈ 𝑋 ↦ ( 𝑥 ( +g ‘ 𝐺 ) 𝑧 ) ) : 𝑋 –1-1-onto→ 𝑋 ) |
| 24 | f1of1 | ⊢ ( ( 𝑧 ∈ 𝑋 ↦ ( 𝑥 ( +g ‘ 𝐺 ) 𝑧 ) ) : 𝑋 –1-1-onto→ 𝑋 → ( 𝑧 ∈ 𝑋 ↦ ( 𝑥 ( +g ‘ 𝐺 ) 𝑧 ) ) : 𝑋 –1-1→ 𝑋 ) | |
| 25 | 23 24 | syl | ⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝑧 ∈ 𝑋 ↦ ( 𝑥 ( +g ‘ 𝐺 ) 𝑧 ) ) : 𝑋 –1-1→ 𝑋 ) |
| 26 | 7 | adantr | ⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∈ 𝑋 ) → 𝑌 ⊆ 𝑋 ) |
| 27 | f1ores | ⊢ ( ( ( 𝑧 ∈ 𝑋 ↦ ( 𝑥 ( +g ‘ 𝐺 ) 𝑧 ) ) : 𝑋 –1-1→ 𝑋 ∧ 𝑌 ⊆ 𝑋 ) → ( ( 𝑧 ∈ 𝑋 ↦ ( 𝑥 ( +g ‘ 𝐺 ) 𝑧 ) ) ↾ 𝑌 ) : 𝑌 –1-1-onto→ ( ( 𝑧 ∈ 𝑋 ↦ ( 𝑥 ( +g ‘ 𝐺 ) 𝑧 ) ) “ 𝑌 ) ) | |
| 28 | 25 26 27 | syl2anc | ⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑧 ∈ 𝑋 ↦ ( 𝑥 ( +g ‘ 𝐺 ) 𝑧 ) ) ↾ 𝑌 ) : 𝑌 –1-1-onto→ ( ( 𝑧 ∈ 𝑋 ↦ ( 𝑥 ( +g ‘ 𝐺 ) 𝑧 ) ) “ 𝑌 ) ) |
| 29 | f1oen2g | ⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ( 𝑧 ∈ 𝑋 ↦ ( 𝑥 ( +g ‘ 𝐺 ) 𝑧 ) ) “ 𝑌 ) ∈ V ∧ ( ( 𝑧 ∈ 𝑋 ↦ ( 𝑥 ( +g ‘ 𝐺 ) 𝑧 ) ) ↾ 𝑌 ) : 𝑌 –1-1-onto→ ( ( 𝑧 ∈ 𝑋 ↦ ( 𝑥 ( +g ‘ 𝐺 ) 𝑧 ) ) “ 𝑌 ) ) → 𝑌 ≈ ( ( 𝑧 ∈ 𝑋 ↦ ( 𝑥 ( +g ‘ 𝐺 ) 𝑧 ) ) “ 𝑌 ) ) | |
| 30 | 5 16 28 29 | syl3anc | ⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∈ 𝑋 ) → 𝑌 ≈ ( ( 𝑧 ∈ 𝑋 ↦ ( 𝑥 ( +g ‘ 𝐺 ) 𝑧 ) ) “ 𝑌 ) ) |
| 31 | 30 12 | breqtrrd | ⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∈ 𝑋 ) → 𝑌 ≈ [ 𝑥 ] ∼ ) |
| 32 | 3 4 31 | ectocld | ⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ ( 𝑋 / ∼ ) ) → 𝑌 ≈ 𝐴 ) |