This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ia-finiteness is a cardinal property. (Contributed by Mario Carneiro, 18-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | enfin1ai | ⊢ ( 𝐴 ≈ 𝐵 → ( 𝐴 ∈ FinIa → 𝐵 ∈ FinIa ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ensym | ⊢ ( 𝐴 ≈ 𝐵 → 𝐵 ≈ 𝐴 ) | |
| 2 | bren | ⊢ ( 𝐵 ≈ 𝐴 ↔ ∃ 𝑓 𝑓 : 𝐵 –1-1-onto→ 𝐴 ) | |
| 3 | 1 2 | sylib | ⊢ ( 𝐴 ≈ 𝐵 → ∃ 𝑓 𝑓 : 𝐵 –1-1-onto→ 𝐴 ) |
| 4 | elpwi | ⊢ ( 𝑥 ∈ 𝒫 𝐵 → 𝑥 ⊆ 𝐵 ) | |
| 5 | simplr | ⊢ ( ( ( 𝑓 : 𝐵 –1-1-onto→ 𝐴 ∧ 𝐴 ∈ FinIa ) ∧ 𝑥 ⊆ 𝐵 ) → 𝐴 ∈ FinIa ) | |
| 6 | imassrn | ⊢ ( 𝑓 “ 𝑥 ) ⊆ ran 𝑓 | |
| 7 | f1of | ⊢ ( 𝑓 : 𝐵 –1-1-onto→ 𝐴 → 𝑓 : 𝐵 ⟶ 𝐴 ) | |
| 8 | 7 | ad2antrr | ⊢ ( ( ( 𝑓 : 𝐵 –1-1-onto→ 𝐴 ∧ 𝐴 ∈ FinIa ) ∧ 𝑥 ⊆ 𝐵 ) → 𝑓 : 𝐵 ⟶ 𝐴 ) |
| 9 | 8 | frnd | ⊢ ( ( ( 𝑓 : 𝐵 –1-1-onto→ 𝐴 ∧ 𝐴 ∈ FinIa ) ∧ 𝑥 ⊆ 𝐵 ) → ran 𝑓 ⊆ 𝐴 ) |
| 10 | 6 9 | sstrid | ⊢ ( ( ( 𝑓 : 𝐵 –1-1-onto→ 𝐴 ∧ 𝐴 ∈ FinIa ) ∧ 𝑥 ⊆ 𝐵 ) → ( 𝑓 “ 𝑥 ) ⊆ 𝐴 ) |
| 11 | fin1ai | ⊢ ( ( 𝐴 ∈ FinIa ∧ ( 𝑓 “ 𝑥 ) ⊆ 𝐴 ) → ( ( 𝑓 “ 𝑥 ) ∈ Fin ∨ ( 𝐴 ∖ ( 𝑓 “ 𝑥 ) ) ∈ Fin ) ) | |
| 12 | 5 10 11 | syl2anc | ⊢ ( ( ( 𝑓 : 𝐵 –1-1-onto→ 𝐴 ∧ 𝐴 ∈ FinIa ) ∧ 𝑥 ⊆ 𝐵 ) → ( ( 𝑓 “ 𝑥 ) ∈ Fin ∨ ( 𝐴 ∖ ( 𝑓 “ 𝑥 ) ) ∈ Fin ) ) |
| 13 | f1of1 | ⊢ ( 𝑓 : 𝐵 –1-1-onto→ 𝐴 → 𝑓 : 𝐵 –1-1→ 𝐴 ) | |
| 14 | 13 | ad2antrr | ⊢ ( ( ( 𝑓 : 𝐵 –1-1-onto→ 𝐴 ∧ 𝐴 ∈ FinIa ) ∧ 𝑥 ⊆ 𝐵 ) → 𝑓 : 𝐵 –1-1→ 𝐴 ) |
| 15 | simpr | ⊢ ( ( ( 𝑓 : 𝐵 –1-1-onto→ 𝐴 ∧ 𝐴 ∈ FinIa ) ∧ 𝑥 ⊆ 𝐵 ) → 𝑥 ⊆ 𝐵 ) | |
| 16 | vex | ⊢ 𝑥 ∈ V | |
| 17 | 16 | a1i | ⊢ ( ( ( 𝑓 : 𝐵 –1-1-onto→ 𝐴 ∧ 𝐴 ∈ FinIa ) ∧ 𝑥 ⊆ 𝐵 ) → 𝑥 ∈ V ) |
| 18 | f1imaeng | ⊢ ( ( 𝑓 : 𝐵 –1-1→ 𝐴 ∧ 𝑥 ⊆ 𝐵 ∧ 𝑥 ∈ V ) → ( 𝑓 “ 𝑥 ) ≈ 𝑥 ) | |
| 19 | 14 15 17 18 | syl3anc | ⊢ ( ( ( 𝑓 : 𝐵 –1-1-onto→ 𝐴 ∧ 𝐴 ∈ FinIa ) ∧ 𝑥 ⊆ 𝐵 ) → ( 𝑓 “ 𝑥 ) ≈ 𝑥 ) |
| 20 | enfi | ⊢ ( ( 𝑓 “ 𝑥 ) ≈ 𝑥 → ( ( 𝑓 “ 𝑥 ) ∈ Fin ↔ 𝑥 ∈ Fin ) ) | |
| 21 | 19 20 | syl | ⊢ ( ( ( 𝑓 : 𝐵 –1-1-onto→ 𝐴 ∧ 𝐴 ∈ FinIa ) ∧ 𝑥 ⊆ 𝐵 ) → ( ( 𝑓 “ 𝑥 ) ∈ Fin ↔ 𝑥 ∈ Fin ) ) |
| 22 | df-f1 | ⊢ ( 𝑓 : 𝐵 –1-1→ 𝐴 ↔ ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ Fun ◡ 𝑓 ) ) | |
| 23 | 22 | simprbi | ⊢ ( 𝑓 : 𝐵 –1-1→ 𝐴 → Fun ◡ 𝑓 ) |
| 24 | imadif | ⊢ ( Fun ◡ 𝑓 → ( 𝑓 “ ( 𝐵 ∖ 𝑥 ) ) = ( ( 𝑓 “ 𝐵 ) ∖ ( 𝑓 “ 𝑥 ) ) ) | |
| 25 | 14 23 24 | 3syl | ⊢ ( ( ( 𝑓 : 𝐵 –1-1-onto→ 𝐴 ∧ 𝐴 ∈ FinIa ) ∧ 𝑥 ⊆ 𝐵 ) → ( 𝑓 “ ( 𝐵 ∖ 𝑥 ) ) = ( ( 𝑓 “ 𝐵 ) ∖ ( 𝑓 “ 𝑥 ) ) ) |
| 26 | f1ofo | ⊢ ( 𝑓 : 𝐵 –1-1-onto→ 𝐴 → 𝑓 : 𝐵 –onto→ 𝐴 ) | |
| 27 | foima | ⊢ ( 𝑓 : 𝐵 –onto→ 𝐴 → ( 𝑓 “ 𝐵 ) = 𝐴 ) | |
| 28 | 26 27 | syl | ⊢ ( 𝑓 : 𝐵 –1-1-onto→ 𝐴 → ( 𝑓 “ 𝐵 ) = 𝐴 ) |
| 29 | 28 | ad2antrr | ⊢ ( ( ( 𝑓 : 𝐵 –1-1-onto→ 𝐴 ∧ 𝐴 ∈ FinIa ) ∧ 𝑥 ⊆ 𝐵 ) → ( 𝑓 “ 𝐵 ) = 𝐴 ) |
| 30 | 29 | difeq1d | ⊢ ( ( ( 𝑓 : 𝐵 –1-1-onto→ 𝐴 ∧ 𝐴 ∈ FinIa ) ∧ 𝑥 ⊆ 𝐵 ) → ( ( 𝑓 “ 𝐵 ) ∖ ( 𝑓 “ 𝑥 ) ) = ( 𝐴 ∖ ( 𝑓 “ 𝑥 ) ) ) |
| 31 | 25 30 | eqtrd | ⊢ ( ( ( 𝑓 : 𝐵 –1-1-onto→ 𝐴 ∧ 𝐴 ∈ FinIa ) ∧ 𝑥 ⊆ 𝐵 ) → ( 𝑓 “ ( 𝐵 ∖ 𝑥 ) ) = ( 𝐴 ∖ ( 𝑓 “ 𝑥 ) ) ) |
| 32 | difssd | ⊢ ( ( ( 𝑓 : 𝐵 –1-1-onto→ 𝐴 ∧ 𝐴 ∈ FinIa ) ∧ 𝑥 ⊆ 𝐵 ) → ( 𝐵 ∖ 𝑥 ) ⊆ 𝐵 ) | |
| 33 | vex | ⊢ 𝑓 ∈ V | |
| 34 | 7 | adantr | ⊢ ( ( 𝑓 : 𝐵 –1-1-onto→ 𝐴 ∧ 𝐴 ∈ FinIa ) → 𝑓 : 𝐵 ⟶ 𝐴 ) |
| 35 | dmfex | ⊢ ( ( 𝑓 ∈ V ∧ 𝑓 : 𝐵 ⟶ 𝐴 ) → 𝐵 ∈ V ) | |
| 36 | 33 34 35 | sylancr | ⊢ ( ( 𝑓 : 𝐵 –1-1-onto→ 𝐴 ∧ 𝐴 ∈ FinIa ) → 𝐵 ∈ V ) |
| 37 | 36 | adantr | ⊢ ( ( ( 𝑓 : 𝐵 –1-1-onto→ 𝐴 ∧ 𝐴 ∈ FinIa ) ∧ 𝑥 ⊆ 𝐵 ) → 𝐵 ∈ V ) |
| 38 | 37 | difexd | ⊢ ( ( ( 𝑓 : 𝐵 –1-1-onto→ 𝐴 ∧ 𝐴 ∈ FinIa ) ∧ 𝑥 ⊆ 𝐵 ) → ( 𝐵 ∖ 𝑥 ) ∈ V ) |
| 39 | f1imaeng | ⊢ ( ( 𝑓 : 𝐵 –1-1→ 𝐴 ∧ ( 𝐵 ∖ 𝑥 ) ⊆ 𝐵 ∧ ( 𝐵 ∖ 𝑥 ) ∈ V ) → ( 𝑓 “ ( 𝐵 ∖ 𝑥 ) ) ≈ ( 𝐵 ∖ 𝑥 ) ) | |
| 40 | 14 32 38 39 | syl3anc | ⊢ ( ( ( 𝑓 : 𝐵 –1-1-onto→ 𝐴 ∧ 𝐴 ∈ FinIa ) ∧ 𝑥 ⊆ 𝐵 ) → ( 𝑓 “ ( 𝐵 ∖ 𝑥 ) ) ≈ ( 𝐵 ∖ 𝑥 ) ) |
| 41 | 31 40 | eqbrtrrd | ⊢ ( ( ( 𝑓 : 𝐵 –1-1-onto→ 𝐴 ∧ 𝐴 ∈ FinIa ) ∧ 𝑥 ⊆ 𝐵 ) → ( 𝐴 ∖ ( 𝑓 “ 𝑥 ) ) ≈ ( 𝐵 ∖ 𝑥 ) ) |
| 42 | enfi | ⊢ ( ( 𝐴 ∖ ( 𝑓 “ 𝑥 ) ) ≈ ( 𝐵 ∖ 𝑥 ) → ( ( 𝐴 ∖ ( 𝑓 “ 𝑥 ) ) ∈ Fin ↔ ( 𝐵 ∖ 𝑥 ) ∈ Fin ) ) | |
| 43 | 41 42 | syl | ⊢ ( ( ( 𝑓 : 𝐵 –1-1-onto→ 𝐴 ∧ 𝐴 ∈ FinIa ) ∧ 𝑥 ⊆ 𝐵 ) → ( ( 𝐴 ∖ ( 𝑓 “ 𝑥 ) ) ∈ Fin ↔ ( 𝐵 ∖ 𝑥 ) ∈ Fin ) ) |
| 44 | 21 43 | orbi12d | ⊢ ( ( ( 𝑓 : 𝐵 –1-1-onto→ 𝐴 ∧ 𝐴 ∈ FinIa ) ∧ 𝑥 ⊆ 𝐵 ) → ( ( ( 𝑓 “ 𝑥 ) ∈ Fin ∨ ( 𝐴 ∖ ( 𝑓 “ 𝑥 ) ) ∈ Fin ) ↔ ( 𝑥 ∈ Fin ∨ ( 𝐵 ∖ 𝑥 ) ∈ Fin ) ) ) |
| 45 | 12 44 | mpbid | ⊢ ( ( ( 𝑓 : 𝐵 –1-1-onto→ 𝐴 ∧ 𝐴 ∈ FinIa ) ∧ 𝑥 ⊆ 𝐵 ) → ( 𝑥 ∈ Fin ∨ ( 𝐵 ∖ 𝑥 ) ∈ Fin ) ) |
| 46 | 4 45 | sylan2 | ⊢ ( ( ( 𝑓 : 𝐵 –1-1-onto→ 𝐴 ∧ 𝐴 ∈ FinIa ) ∧ 𝑥 ∈ 𝒫 𝐵 ) → ( 𝑥 ∈ Fin ∨ ( 𝐵 ∖ 𝑥 ) ∈ Fin ) ) |
| 47 | 46 | ralrimiva | ⊢ ( ( 𝑓 : 𝐵 –1-1-onto→ 𝐴 ∧ 𝐴 ∈ FinIa ) → ∀ 𝑥 ∈ 𝒫 𝐵 ( 𝑥 ∈ Fin ∨ ( 𝐵 ∖ 𝑥 ) ∈ Fin ) ) |
| 48 | isfin1a | ⊢ ( 𝐵 ∈ V → ( 𝐵 ∈ FinIa ↔ ∀ 𝑥 ∈ 𝒫 𝐵 ( 𝑥 ∈ Fin ∨ ( 𝐵 ∖ 𝑥 ) ∈ Fin ) ) ) | |
| 49 | 36 48 | syl | ⊢ ( ( 𝑓 : 𝐵 –1-1-onto→ 𝐴 ∧ 𝐴 ∈ FinIa ) → ( 𝐵 ∈ FinIa ↔ ∀ 𝑥 ∈ 𝒫 𝐵 ( 𝑥 ∈ Fin ∨ ( 𝐵 ∖ 𝑥 ) ∈ Fin ) ) ) |
| 50 | 47 49 | mpbird | ⊢ ( ( 𝑓 : 𝐵 –1-1-onto→ 𝐴 ∧ 𝐴 ∈ FinIa ) → 𝐵 ∈ FinIa ) |
| 51 | 50 | ex | ⊢ ( 𝑓 : 𝐵 –1-1-onto→ 𝐴 → ( 𝐴 ∈ FinIa → 𝐵 ∈ FinIa ) ) |
| 52 | 51 | exlimiv | ⊢ ( ∃ 𝑓 𝑓 : 𝐵 –1-1-onto→ 𝐴 → ( 𝐴 ∈ FinIa → 𝐵 ∈ FinIa ) ) |
| 53 | 3 52 | syl | ⊢ ( 𝐴 ≈ 𝐵 → ( 𝐴 ∈ FinIa → 𝐵 ∈ FinIa ) ) |