This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Definition of a Ia-finite set. (Contributed by Stefan O'Rear, 16-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | isfin1a | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∈ FinIa ↔ ∀ 𝑦 ∈ 𝒫 𝐴 ( 𝑦 ∈ Fin ∨ ( 𝐴 ∖ 𝑦 ) ∈ Fin ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pweq | ⊢ ( 𝑥 = 𝐴 → 𝒫 𝑥 = 𝒫 𝐴 ) | |
| 2 | difeq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 ∖ 𝑦 ) = ( 𝐴 ∖ 𝑦 ) ) | |
| 3 | 2 | eleq1d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 ∖ 𝑦 ) ∈ Fin ↔ ( 𝐴 ∖ 𝑦 ) ∈ Fin ) ) |
| 4 | 3 | orbi2d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝑦 ∈ Fin ∨ ( 𝑥 ∖ 𝑦 ) ∈ Fin ) ↔ ( 𝑦 ∈ Fin ∨ ( 𝐴 ∖ 𝑦 ) ∈ Fin ) ) ) |
| 5 | 1 4 | raleqbidv | ⊢ ( 𝑥 = 𝐴 → ( ∀ 𝑦 ∈ 𝒫 𝑥 ( 𝑦 ∈ Fin ∨ ( 𝑥 ∖ 𝑦 ) ∈ Fin ) ↔ ∀ 𝑦 ∈ 𝒫 𝐴 ( 𝑦 ∈ Fin ∨ ( 𝐴 ∖ 𝑦 ) ∈ Fin ) ) ) |
| 6 | df-fin1a | ⊢ FinIa = { 𝑥 ∣ ∀ 𝑦 ∈ 𝒫 𝑥 ( 𝑦 ∈ Fin ∨ ( 𝑥 ∖ 𝑦 ) ∈ Fin ) } | |
| 7 | 5 6 | elab2g | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∈ FinIa ↔ ∀ 𝑦 ∈ 𝒫 𝐴 ( 𝑦 ∈ Fin ∨ ( 𝐴 ∖ 𝑦 ) ∈ Fin ) ) ) |