This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ia-finiteness is a cardinal property. (Contributed by Mario Carneiro, 18-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | enfin1ai | |- ( A ~~ B -> ( A e. Fin1a -> B e. Fin1a ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ensym | |- ( A ~~ B -> B ~~ A ) |
|
| 2 | bren | |- ( B ~~ A <-> E. f f : B -1-1-onto-> A ) |
|
| 3 | 1 2 | sylib | |- ( A ~~ B -> E. f f : B -1-1-onto-> A ) |
| 4 | elpwi | |- ( x e. ~P B -> x C_ B ) |
|
| 5 | simplr | |- ( ( ( f : B -1-1-onto-> A /\ A e. Fin1a ) /\ x C_ B ) -> A e. Fin1a ) |
|
| 6 | imassrn | |- ( f " x ) C_ ran f |
|
| 7 | f1of | |- ( f : B -1-1-onto-> A -> f : B --> A ) |
|
| 8 | 7 | ad2antrr | |- ( ( ( f : B -1-1-onto-> A /\ A e. Fin1a ) /\ x C_ B ) -> f : B --> A ) |
| 9 | 8 | frnd | |- ( ( ( f : B -1-1-onto-> A /\ A e. Fin1a ) /\ x C_ B ) -> ran f C_ A ) |
| 10 | 6 9 | sstrid | |- ( ( ( f : B -1-1-onto-> A /\ A e. Fin1a ) /\ x C_ B ) -> ( f " x ) C_ A ) |
| 11 | fin1ai | |- ( ( A e. Fin1a /\ ( f " x ) C_ A ) -> ( ( f " x ) e. Fin \/ ( A \ ( f " x ) ) e. Fin ) ) |
|
| 12 | 5 10 11 | syl2anc | |- ( ( ( f : B -1-1-onto-> A /\ A e. Fin1a ) /\ x C_ B ) -> ( ( f " x ) e. Fin \/ ( A \ ( f " x ) ) e. Fin ) ) |
| 13 | f1of1 | |- ( f : B -1-1-onto-> A -> f : B -1-1-> A ) |
|
| 14 | 13 | ad2antrr | |- ( ( ( f : B -1-1-onto-> A /\ A e. Fin1a ) /\ x C_ B ) -> f : B -1-1-> A ) |
| 15 | simpr | |- ( ( ( f : B -1-1-onto-> A /\ A e. Fin1a ) /\ x C_ B ) -> x C_ B ) |
|
| 16 | vex | |- x e. _V |
|
| 17 | 16 | a1i | |- ( ( ( f : B -1-1-onto-> A /\ A e. Fin1a ) /\ x C_ B ) -> x e. _V ) |
| 18 | f1imaeng | |- ( ( f : B -1-1-> A /\ x C_ B /\ x e. _V ) -> ( f " x ) ~~ x ) |
|
| 19 | 14 15 17 18 | syl3anc | |- ( ( ( f : B -1-1-onto-> A /\ A e. Fin1a ) /\ x C_ B ) -> ( f " x ) ~~ x ) |
| 20 | enfi | |- ( ( f " x ) ~~ x -> ( ( f " x ) e. Fin <-> x e. Fin ) ) |
|
| 21 | 19 20 | syl | |- ( ( ( f : B -1-1-onto-> A /\ A e. Fin1a ) /\ x C_ B ) -> ( ( f " x ) e. Fin <-> x e. Fin ) ) |
| 22 | df-f1 | |- ( f : B -1-1-> A <-> ( f : B --> A /\ Fun `' f ) ) |
|
| 23 | 22 | simprbi | |- ( f : B -1-1-> A -> Fun `' f ) |
| 24 | imadif | |- ( Fun `' f -> ( f " ( B \ x ) ) = ( ( f " B ) \ ( f " x ) ) ) |
|
| 25 | 14 23 24 | 3syl | |- ( ( ( f : B -1-1-onto-> A /\ A e. Fin1a ) /\ x C_ B ) -> ( f " ( B \ x ) ) = ( ( f " B ) \ ( f " x ) ) ) |
| 26 | f1ofo | |- ( f : B -1-1-onto-> A -> f : B -onto-> A ) |
|
| 27 | foima | |- ( f : B -onto-> A -> ( f " B ) = A ) |
|
| 28 | 26 27 | syl | |- ( f : B -1-1-onto-> A -> ( f " B ) = A ) |
| 29 | 28 | ad2antrr | |- ( ( ( f : B -1-1-onto-> A /\ A e. Fin1a ) /\ x C_ B ) -> ( f " B ) = A ) |
| 30 | 29 | difeq1d | |- ( ( ( f : B -1-1-onto-> A /\ A e. Fin1a ) /\ x C_ B ) -> ( ( f " B ) \ ( f " x ) ) = ( A \ ( f " x ) ) ) |
| 31 | 25 30 | eqtrd | |- ( ( ( f : B -1-1-onto-> A /\ A e. Fin1a ) /\ x C_ B ) -> ( f " ( B \ x ) ) = ( A \ ( f " x ) ) ) |
| 32 | difssd | |- ( ( ( f : B -1-1-onto-> A /\ A e. Fin1a ) /\ x C_ B ) -> ( B \ x ) C_ B ) |
|
| 33 | vex | |- f e. _V |
|
| 34 | 7 | adantr | |- ( ( f : B -1-1-onto-> A /\ A e. Fin1a ) -> f : B --> A ) |
| 35 | dmfex | |- ( ( f e. _V /\ f : B --> A ) -> B e. _V ) |
|
| 36 | 33 34 35 | sylancr | |- ( ( f : B -1-1-onto-> A /\ A e. Fin1a ) -> B e. _V ) |
| 37 | 36 | adantr | |- ( ( ( f : B -1-1-onto-> A /\ A e. Fin1a ) /\ x C_ B ) -> B e. _V ) |
| 38 | 37 | difexd | |- ( ( ( f : B -1-1-onto-> A /\ A e. Fin1a ) /\ x C_ B ) -> ( B \ x ) e. _V ) |
| 39 | f1imaeng | |- ( ( f : B -1-1-> A /\ ( B \ x ) C_ B /\ ( B \ x ) e. _V ) -> ( f " ( B \ x ) ) ~~ ( B \ x ) ) |
|
| 40 | 14 32 38 39 | syl3anc | |- ( ( ( f : B -1-1-onto-> A /\ A e. Fin1a ) /\ x C_ B ) -> ( f " ( B \ x ) ) ~~ ( B \ x ) ) |
| 41 | 31 40 | eqbrtrrd | |- ( ( ( f : B -1-1-onto-> A /\ A e. Fin1a ) /\ x C_ B ) -> ( A \ ( f " x ) ) ~~ ( B \ x ) ) |
| 42 | enfi | |- ( ( A \ ( f " x ) ) ~~ ( B \ x ) -> ( ( A \ ( f " x ) ) e. Fin <-> ( B \ x ) e. Fin ) ) |
|
| 43 | 41 42 | syl | |- ( ( ( f : B -1-1-onto-> A /\ A e. Fin1a ) /\ x C_ B ) -> ( ( A \ ( f " x ) ) e. Fin <-> ( B \ x ) e. Fin ) ) |
| 44 | 21 43 | orbi12d | |- ( ( ( f : B -1-1-onto-> A /\ A e. Fin1a ) /\ x C_ B ) -> ( ( ( f " x ) e. Fin \/ ( A \ ( f " x ) ) e. Fin ) <-> ( x e. Fin \/ ( B \ x ) e. Fin ) ) ) |
| 45 | 12 44 | mpbid | |- ( ( ( f : B -1-1-onto-> A /\ A e. Fin1a ) /\ x C_ B ) -> ( x e. Fin \/ ( B \ x ) e. Fin ) ) |
| 46 | 4 45 | sylan2 | |- ( ( ( f : B -1-1-onto-> A /\ A e. Fin1a ) /\ x e. ~P B ) -> ( x e. Fin \/ ( B \ x ) e. Fin ) ) |
| 47 | 46 | ralrimiva | |- ( ( f : B -1-1-onto-> A /\ A e. Fin1a ) -> A. x e. ~P B ( x e. Fin \/ ( B \ x ) e. Fin ) ) |
| 48 | isfin1a | |- ( B e. _V -> ( B e. Fin1a <-> A. x e. ~P B ( x e. Fin \/ ( B \ x ) e. Fin ) ) ) |
|
| 49 | 36 48 | syl | |- ( ( f : B -1-1-onto-> A /\ A e. Fin1a ) -> ( B e. Fin1a <-> A. x e. ~P B ( x e. Fin \/ ( B \ x ) e. Fin ) ) ) |
| 50 | 47 49 | mpbird | |- ( ( f : B -1-1-onto-> A /\ A e. Fin1a ) -> B e. Fin1a ) |
| 51 | 50 | ex | |- ( f : B -1-1-onto-> A -> ( A e. Fin1a -> B e. Fin1a ) ) |
| 52 | 51 | exlimiv | |- ( E. f f : B -1-1-onto-> A -> ( A e. Fin1a -> B e. Fin1a ) ) |
| 53 | 3 52 | syl | |- ( A ~~ B -> ( A e. Fin1a -> B e. Fin1a ) ) |