This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Property of a Ia-finite set. (Contributed by Stefan O'Rear, 16-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fin1ai | ⊢ ( ( 𝐴 ∈ FinIa ∧ 𝑋 ⊆ 𝐴 ) → ( 𝑋 ∈ Fin ∨ ( 𝐴 ∖ 𝑋 ) ∈ Fin ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 | ⊢ ( 𝑥 = 𝑋 → ( 𝑥 ∈ Fin ↔ 𝑋 ∈ Fin ) ) | |
| 2 | difeq2 | ⊢ ( 𝑥 = 𝑋 → ( 𝐴 ∖ 𝑥 ) = ( 𝐴 ∖ 𝑋 ) ) | |
| 3 | 2 | eleq1d | ⊢ ( 𝑥 = 𝑋 → ( ( 𝐴 ∖ 𝑥 ) ∈ Fin ↔ ( 𝐴 ∖ 𝑋 ) ∈ Fin ) ) |
| 4 | 1 3 | orbi12d | ⊢ ( 𝑥 = 𝑋 → ( ( 𝑥 ∈ Fin ∨ ( 𝐴 ∖ 𝑥 ) ∈ Fin ) ↔ ( 𝑋 ∈ Fin ∨ ( 𝐴 ∖ 𝑋 ) ∈ Fin ) ) ) |
| 5 | isfin1a | ⊢ ( 𝐴 ∈ FinIa → ( 𝐴 ∈ FinIa ↔ ∀ 𝑥 ∈ 𝒫 𝐴 ( 𝑥 ∈ Fin ∨ ( 𝐴 ∖ 𝑥 ) ∈ Fin ) ) ) | |
| 6 | 5 | ibi | ⊢ ( 𝐴 ∈ FinIa → ∀ 𝑥 ∈ 𝒫 𝐴 ( 𝑥 ∈ Fin ∨ ( 𝐴 ∖ 𝑥 ) ∈ Fin ) ) |
| 7 | 6 | adantr | ⊢ ( ( 𝐴 ∈ FinIa ∧ 𝑋 ⊆ 𝐴 ) → ∀ 𝑥 ∈ 𝒫 𝐴 ( 𝑥 ∈ Fin ∨ ( 𝐴 ∖ 𝑥 ) ∈ Fin ) ) |
| 8 | elpw2g | ⊢ ( 𝐴 ∈ FinIa → ( 𝑋 ∈ 𝒫 𝐴 ↔ 𝑋 ⊆ 𝐴 ) ) | |
| 9 | 8 | biimpar | ⊢ ( ( 𝐴 ∈ FinIa ∧ 𝑋 ⊆ 𝐴 ) → 𝑋 ∈ 𝒫 𝐴 ) |
| 10 | 4 7 9 | rspcdva | ⊢ ( ( 𝐴 ∈ FinIa ∧ 𝑋 ⊆ 𝐴 ) → ( 𝑋 ∈ Fin ∨ ( 𝐴 ∖ 𝑋 ) ∈ Fin ) ) |