This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equinumerosity is an equivalence relation. (Contributed by NM, 19-Mar-1998) (Revised by Mario Carneiro, 15-Nov-2014) (Proof shortened by AV, 1-May-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ener | ⊢ ≈ Er V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relen | ⊢ Rel ≈ | |
| 2 | bren | ⊢ ( 𝑥 ≈ 𝑦 ↔ ∃ 𝑓 𝑓 : 𝑥 –1-1-onto→ 𝑦 ) | |
| 3 | vex | ⊢ 𝑦 ∈ V | |
| 4 | vex | ⊢ 𝑥 ∈ V | |
| 5 | f1ocnv | ⊢ ( 𝑓 : 𝑥 –1-1-onto→ 𝑦 → ◡ 𝑓 : 𝑦 –1-1-onto→ 𝑥 ) | |
| 6 | f1oen2g | ⊢ ( ( 𝑦 ∈ V ∧ 𝑥 ∈ V ∧ ◡ 𝑓 : 𝑦 –1-1-onto→ 𝑥 ) → 𝑦 ≈ 𝑥 ) | |
| 7 | 3 4 5 6 | mp3an12i | ⊢ ( 𝑓 : 𝑥 –1-1-onto→ 𝑦 → 𝑦 ≈ 𝑥 ) |
| 8 | 7 | exlimiv | ⊢ ( ∃ 𝑓 𝑓 : 𝑥 –1-1-onto→ 𝑦 → 𝑦 ≈ 𝑥 ) |
| 9 | 2 8 | sylbi | ⊢ ( 𝑥 ≈ 𝑦 → 𝑦 ≈ 𝑥 ) |
| 10 | bren | ⊢ ( 𝑥 ≈ 𝑦 ↔ ∃ 𝑔 𝑔 : 𝑥 –1-1-onto→ 𝑦 ) | |
| 11 | bren | ⊢ ( 𝑦 ≈ 𝑧 ↔ ∃ 𝑓 𝑓 : 𝑦 –1-1-onto→ 𝑧 ) | |
| 12 | exdistrv | ⊢ ( ∃ 𝑔 ∃ 𝑓 ( 𝑔 : 𝑥 –1-1-onto→ 𝑦 ∧ 𝑓 : 𝑦 –1-1-onto→ 𝑧 ) ↔ ( ∃ 𝑔 𝑔 : 𝑥 –1-1-onto→ 𝑦 ∧ ∃ 𝑓 𝑓 : 𝑦 –1-1-onto→ 𝑧 ) ) | |
| 13 | vex | ⊢ 𝑧 ∈ V | |
| 14 | f1oco | ⊢ ( ( 𝑓 : 𝑦 –1-1-onto→ 𝑧 ∧ 𝑔 : 𝑥 –1-1-onto→ 𝑦 ) → ( 𝑓 ∘ 𝑔 ) : 𝑥 –1-1-onto→ 𝑧 ) | |
| 15 | 14 | ancoms | ⊢ ( ( 𝑔 : 𝑥 –1-1-onto→ 𝑦 ∧ 𝑓 : 𝑦 –1-1-onto→ 𝑧 ) → ( 𝑓 ∘ 𝑔 ) : 𝑥 –1-1-onto→ 𝑧 ) |
| 16 | f1oen2g | ⊢ ( ( 𝑥 ∈ V ∧ 𝑧 ∈ V ∧ ( 𝑓 ∘ 𝑔 ) : 𝑥 –1-1-onto→ 𝑧 ) → 𝑥 ≈ 𝑧 ) | |
| 17 | 4 13 15 16 | mp3an12i | ⊢ ( ( 𝑔 : 𝑥 –1-1-onto→ 𝑦 ∧ 𝑓 : 𝑦 –1-1-onto→ 𝑧 ) → 𝑥 ≈ 𝑧 ) |
| 18 | 17 | exlimivv | ⊢ ( ∃ 𝑔 ∃ 𝑓 ( 𝑔 : 𝑥 –1-1-onto→ 𝑦 ∧ 𝑓 : 𝑦 –1-1-onto→ 𝑧 ) → 𝑥 ≈ 𝑧 ) |
| 19 | 12 18 | sylbir | ⊢ ( ( ∃ 𝑔 𝑔 : 𝑥 –1-1-onto→ 𝑦 ∧ ∃ 𝑓 𝑓 : 𝑦 –1-1-onto→ 𝑧 ) → 𝑥 ≈ 𝑧 ) |
| 20 | 10 11 19 | syl2anb | ⊢ ( ( 𝑥 ≈ 𝑦 ∧ 𝑦 ≈ 𝑧 ) → 𝑥 ≈ 𝑧 ) |
| 21 | 4 | enref | ⊢ 𝑥 ≈ 𝑥 |
| 22 | 4 21 | 2th | ⊢ ( 𝑥 ∈ V ↔ 𝑥 ≈ 𝑥 ) |
| 23 | 1 9 20 22 | iseri | ⊢ ≈ Er V |