This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equinumerosity is an equivalence relation. (Contributed by NM, 19-Mar-1998) (Revised by Mario Carneiro, 15-Nov-2014) (Proof shortened by AV, 1-May-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ener | |- ~~ Er _V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relen | |- Rel ~~ |
|
| 2 | bren | |- ( x ~~ y <-> E. f f : x -1-1-onto-> y ) |
|
| 3 | vex | |- y e. _V |
|
| 4 | vex | |- x e. _V |
|
| 5 | f1ocnv | |- ( f : x -1-1-onto-> y -> `' f : y -1-1-onto-> x ) |
|
| 6 | f1oen2g | |- ( ( y e. _V /\ x e. _V /\ `' f : y -1-1-onto-> x ) -> y ~~ x ) |
|
| 7 | 3 4 5 6 | mp3an12i | |- ( f : x -1-1-onto-> y -> y ~~ x ) |
| 8 | 7 | exlimiv | |- ( E. f f : x -1-1-onto-> y -> y ~~ x ) |
| 9 | 2 8 | sylbi | |- ( x ~~ y -> y ~~ x ) |
| 10 | bren | |- ( x ~~ y <-> E. g g : x -1-1-onto-> y ) |
|
| 11 | bren | |- ( y ~~ z <-> E. f f : y -1-1-onto-> z ) |
|
| 12 | exdistrv | |- ( E. g E. f ( g : x -1-1-onto-> y /\ f : y -1-1-onto-> z ) <-> ( E. g g : x -1-1-onto-> y /\ E. f f : y -1-1-onto-> z ) ) |
|
| 13 | vex | |- z e. _V |
|
| 14 | f1oco | |- ( ( f : y -1-1-onto-> z /\ g : x -1-1-onto-> y ) -> ( f o. g ) : x -1-1-onto-> z ) |
|
| 15 | 14 | ancoms | |- ( ( g : x -1-1-onto-> y /\ f : y -1-1-onto-> z ) -> ( f o. g ) : x -1-1-onto-> z ) |
| 16 | f1oen2g | |- ( ( x e. _V /\ z e. _V /\ ( f o. g ) : x -1-1-onto-> z ) -> x ~~ z ) |
|
| 17 | 4 13 15 16 | mp3an12i | |- ( ( g : x -1-1-onto-> y /\ f : y -1-1-onto-> z ) -> x ~~ z ) |
| 18 | 17 | exlimivv | |- ( E. g E. f ( g : x -1-1-onto-> y /\ f : y -1-1-onto-> z ) -> x ~~ z ) |
| 19 | 12 18 | sylbir | |- ( ( E. g g : x -1-1-onto-> y /\ E. f f : y -1-1-onto-> z ) -> x ~~ z ) |
| 20 | 10 11 19 | syl2anb | |- ( ( x ~~ y /\ y ~~ z ) -> x ~~ z ) |
| 21 | 4 | enref | |- x ~~ x |
| 22 | 4 21 | 2th | |- ( x e. _V <-> x ~~ x ) |
| 23 | 1 9 20 22 | iseri | |- ~~ Er _V |