This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: No class has 3-cycle membership loops. This proof was automatically generated from the virtual deduction proof en3lpVD using a translation program. (Contributed by Alan Sare, 24-Oct-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | en3lp | |- -. ( A e. B /\ B e. C /\ C e. A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | noel | |- -. C e. (/) |
|
| 2 | eleq2 | |- ( { A , B , C } = (/) -> ( C e. { A , B , C } <-> C e. (/) ) ) |
|
| 3 | 1 2 | mtbiri | |- ( { A , B , C } = (/) -> -. C e. { A , B , C } ) |
| 4 | tpid3g | |- ( C e. A -> C e. { A , B , C } ) |
|
| 5 | 3 4 | nsyl | |- ( { A , B , C } = (/) -> -. C e. A ) |
| 6 | 5 | intn3an3d | |- ( { A , B , C } = (/) -> -. ( A e. B /\ B e. C /\ C e. A ) ) |
| 7 | tpex | |- { A , B , C } e. _V |
|
| 8 | zfreg | |- ( ( { A , B , C } e. _V /\ { A , B , C } =/= (/) ) -> E. x e. { A , B , C } ( x i^i { A , B , C } ) = (/) ) |
|
| 9 | 7 8 | mpan | |- ( { A , B , C } =/= (/) -> E. x e. { A , B , C } ( x i^i { A , B , C } ) = (/) ) |
| 10 | en3lplem2 | |- ( ( A e. B /\ B e. C /\ C e. A ) -> ( x e. { A , B , C } -> ( x i^i { A , B , C } ) =/= (/) ) ) |
|
| 11 | 10 | com12 | |- ( x e. { A , B , C } -> ( ( A e. B /\ B e. C /\ C e. A ) -> ( x i^i { A , B , C } ) =/= (/) ) ) |
| 12 | 11 | necon2bd | |- ( x e. { A , B , C } -> ( ( x i^i { A , B , C } ) = (/) -> -. ( A e. B /\ B e. C /\ C e. A ) ) ) |
| 13 | 12 | rexlimiv | |- ( E. x e. { A , B , C } ( x i^i { A , B , C } ) = (/) -> -. ( A e. B /\ B e. C /\ C e. A ) ) |
| 14 | 9 13 | syl | |- ( { A , B , C } =/= (/) -> -. ( A e. B /\ B e. C /\ C e. A ) ) |
| 15 | 6 14 | pm2.61ine | |- -. ( A e. B /\ B e. C /\ C e. A ) |