This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equality of two unordered pairs when one member of each pair contains the other member. Closed form of preleq . (Contributed by AV, 15-Jun-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | preleqg | ⊢ ( ( ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐷 ) ∧ { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } ) → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elneq | ⊢ ( 𝐴 ∈ 𝐵 → 𝐴 ≠ 𝐵 ) | |
| 2 | 1 | 3ad2ant1 | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐷 ) → 𝐴 ≠ 𝐵 ) |
| 3 | preq12nebg | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝑉 ∧ 𝐴 ≠ 𝐵 ) → ( { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } ↔ ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ∨ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) ) ) ) | |
| 4 | 2 3 | syld3an3 | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐷 ) → ( { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } ↔ ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ∨ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) ) ) ) |
| 5 | eleq12 | ⊢ ( ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) → ( 𝐴 ∈ 𝐵 ↔ 𝐷 ∈ 𝐶 ) ) | |
| 6 | elnotel | ⊢ ( 𝐷 ∈ 𝐶 → ¬ 𝐶 ∈ 𝐷 ) | |
| 7 | 6 | pm2.21d | ⊢ ( 𝐷 ∈ 𝐶 → ( 𝐶 ∈ 𝐷 → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) ) |
| 8 | 5 7 | biimtrdi | ⊢ ( ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) → ( 𝐴 ∈ 𝐵 → ( 𝐶 ∈ 𝐷 → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) ) ) |
| 9 | 8 | com3l | ⊢ ( 𝐴 ∈ 𝐵 → ( 𝐶 ∈ 𝐷 → ( ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) ) ) |
| 10 | 9 | a1d | ⊢ ( 𝐴 ∈ 𝐵 → ( 𝐵 ∈ 𝑉 → ( 𝐶 ∈ 𝐷 → ( ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) ) ) ) |
| 11 | 10 | 3imp | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐷 ) → ( ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) ) |
| 12 | 11 | com12 | ⊢ ( ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) → ( ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐷 ) → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) ) |
| 13 | 12 | jao1i | ⊢ ( ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ∨ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) ) → ( ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐷 ) → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) ) |
| 14 | 13 | com12 | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐷 ) → ( ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ∨ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) ) → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) ) |
| 15 | 4 14 | sylbid | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐷 ) → ( { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) ) |
| 16 | 15 | imp | ⊢ ( ( ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐷 ) ∧ { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } ) → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) |