This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for en3lp . (Contributed by Alan Sare, 28-Oct-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | en3lplem2 | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ) → ( 𝑥 ∈ { 𝐴 , 𝐵 , 𝐶 } → ( 𝑥 ∩ { 𝐴 , 𝐵 , 𝐶 } ) ≠ ∅ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | en3lplem1 | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ) → ( 𝑥 = 𝐴 → ( 𝑥 ∩ { 𝐴 , 𝐵 , 𝐶 } ) ≠ ∅ ) ) | |
| 2 | en3lplem1 | ⊢ ( ( 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ∧ 𝐴 ∈ 𝐵 ) → ( 𝑥 = 𝐵 → ( 𝑥 ∩ { 𝐵 , 𝐶 , 𝐴 } ) ≠ ∅ ) ) | |
| 3 | 2 | 3comr | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ) → ( 𝑥 = 𝐵 → ( 𝑥 ∩ { 𝐵 , 𝐶 , 𝐴 } ) ≠ ∅ ) ) |
| 4 | 3 | a1d | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ) → ( 𝑥 ∈ { 𝐴 , 𝐵 , 𝐶 } → ( 𝑥 = 𝐵 → ( 𝑥 ∩ { 𝐵 , 𝐶 , 𝐴 } ) ≠ ∅ ) ) ) |
| 5 | tprot | ⊢ { 𝐴 , 𝐵 , 𝐶 } = { 𝐵 , 𝐶 , 𝐴 } | |
| 6 | 5 | ineq2i | ⊢ ( 𝑥 ∩ { 𝐴 , 𝐵 , 𝐶 } ) = ( 𝑥 ∩ { 𝐵 , 𝐶 , 𝐴 } ) |
| 7 | 6 | neeq1i | ⊢ ( ( 𝑥 ∩ { 𝐴 , 𝐵 , 𝐶 } ) ≠ ∅ ↔ ( 𝑥 ∩ { 𝐵 , 𝐶 , 𝐴 } ) ≠ ∅ ) |
| 8 | 7 | bicomi | ⊢ ( ( 𝑥 ∩ { 𝐵 , 𝐶 , 𝐴 } ) ≠ ∅ ↔ ( 𝑥 ∩ { 𝐴 , 𝐵 , 𝐶 } ) ≠ ∅ ) |
| 9 | 4 8 | syl8ib | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ) → ( 𝑥 ∈ { 𝐴 , 𝐵 , 𝐶 } → ( 𝑥 = 𝐵 → ( 𝑥 ∩ { 𝐴 , 𝐵 , 𝐶 } ) ≠ ∅ ) ) ) |
| 10 | jao | ⊢ ( ( 𝑥 = 𝐴 → ( 𝑥 ∩ { 𝐴 , 𝐵 , 𝐶 } ) ≠ ∅ ) → ( ( 𝑥 = 𝐵 → ( 𝑥 ∩ { 𝐴 , 𝐵 , 𝐶 } ) ≠ ∅ ) → ( ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) → ( 𝑥 ∩ { 𝐴 , 𝐵 , 𝐶 } ) ≠ ∅ ) ) ) | |
| 11 | 1 9 10 | sylsyld | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ) → ( 𝑥 ∈ { 𝐴 , 𝐵 , 𝐶 } → ( ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) → ( 𝑥 ∩ { 𝐴 , 𝐵 , 𝐶 } ) ≠ ∅ ) ) ) |
| 12 | 11 | imp | ⊢ ( ( ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ) ∧ 𝑥 ∈ { 𝐴 , 𝐵 , 𝐶 } ) → ( ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) → ( 𝑥 ∩ { 𝐴 , 𝐵 , 𝐶 } ) ≠ ∅ ) ) |
| 13 | en3lplem1 | ⊢ ( ( 𝐶 ∈ 𝐴 ∧ 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ) → ( 𝑥 = 𝐶 → ( 𝑥 ∩ { 𝐶 , 𝐴 , 𝐵 } ) ≠ ∅ ) ) | |
| 14 | 13 | 3coml | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ) → ( 𝑥 = 𝐶 → ( 𝑥 ∩ { 𝐶 , 𝐴 , 𝐵 } ) ≠ ∅ ) ) |
| 15 | 14 | a1d | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ) → ( 𝑥 ∈ { 𝐴 , 𝐵 , 𝐶 } → ( 𝑥 = 𝐶 → ( 𝑥 ∩ { 𝐶 , 𝐴 , 𝐵 } ) ≠ ∅ ) ) ) |
| 16 | tprot | ⊢ { 𝐶 , 𝐴 , 𝐵 } = { 𝐴 , 𝐵 , 𝐶 } | |
| 17 | 16 | ineq2i | ⊢ ( 𝑥 ∩ { 𝐶 , 𝐴 , 𝐵 } ) = ( 𝑥 ∩ { 𝐴 , 𝐵 , 𝐶 } ) |
| 18 | 17 | neeq1i | ⊢ ( ( 𝑥 ∩ { 𝐶 , 𝐴 , 𝐵 } ) ≠ ∅ ↔ ( 𝑥 ∩ { 𝐴 , 𝐵 , 𝐶 } ) ≠ ∅ ) |
| 19 | 15 18 | syl8ib | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ) → ( 𝑥 ∈ { 𝐴 , 𝐵 , 𝐶 } → ( 𝑥 = 𝐶 → ( 𝑥 ∩ { 𝐴 , 𝐵 , 𝐶 } ) ≠ ∅ ) ) ) |
| 20 | 19 | imp | ⊢ ( ( ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ) ∧ 𝑥 ∈ { 𝐴 , 𝐵 , 𝐶 } ) → ( 𝑥 = 𝐶 → ( 𝑥 ∩ { 𝐴 , 𝐵 , 𝐶 } ) ≠ ∅ ) ) |
| 21 | idd | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ) → ( 𝑥 ∈ { 𝐴 , 𝐵 , 𝐶 } → 𝑥 ∈ { 𝐴 , 𝐵 , 𝐶 } ) ) | |
| 22 | dftp2 | ⊢ { 𝐴 , 𝐵 , 𝐶 } = { 𝑥 ∣ ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ∨ 𝑥 = 𝐶 ) } | |
| 23 | 22 | eleq2i | ⊢ ( 𝑥 ∈ { 𝐴 , 𝐵 , 𝐶 } ↔ 𝑥 ∈ { 𝑥 ∣ ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ∨ 𝑥 = 𝐶 ) } ) |
| 24 | 21 23 | imbitrdi | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ) → ( 𝑥 ∈ { 𝐴 , 𝐵 , 𝐶 } → 𝑥 ∈ { 𝑥 ∣ ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ∨ 𝑥 = 𝐶 ) } ) ) |
| 25 | abid | ⊢ ( 𝑥 ∈ { 𝑥 ∣ ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ∨ 𝑥 = 𝐶 ) } ↔ ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ∨ 𝑥 = 𝐶 ) ) | |
| 26 | 24 25 | imbitrdi | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ) → ( 𝑥 ∈ { 𝐴 , 𝐵 , 𝐶 } → ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ∨ 𝑥 = 𝐶 ) ) ) |
| 27 | df-3or | ⊢ ( ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ∨ 𝑥 = 𝐶 ) ↔ ( ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) ∨ 𝑥 = 𝐶 ) ) | |
| 28 | 26 27 | imbitrdi | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ) → ( 𝑥 ∈ { 𝐴 , 𝐵 , 𝐶 } → ( ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) ∨ 𝑥 = 𝐶 ) ) ) |
| 29 | 28 | imp | ⊢ ( ( ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ) ∧ 𝑥 ∈ { 𝐴 , 𝐵 , 𝐶 } ) → ( ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) ∨ 𝑥 = 𝐶 ) ) |
| 30 | 12 20 29 | mpjaod | ⊢ ( ( ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ) ∧ 𝑥 ∈ { 𝐴 , 𝐵 , 𝐶 } ) → ( 𝑥 ∩ { 𝐴 , 𝐵 , 𝐶 } ) ≠ ∅ ) |
| 31 | 30 | ex | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ) → ( 𝑥 ∈ { 𝐴 , 𝐵 , 𝐶 } → ( 𝑥 ∩ { 𝐴 , 𝐵 , 𝐶 } ) ≠ ∅ ) ) |