This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Virtual deduction proof of en3lp . (Contributed by Alan Sare, 24-Oct-2011) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | en3lpVD | ⊢ ¬ ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.1 | ⊢ ( ¬ { 𝐴 , 𝐵 , 𝐶 } = ∅ ∨ { 𝐴 , 𝐵 , 𝐶 } = ∅ ) | |
| 2 | df-ne | ⊢ ( { 𝐴 , 𝐵 , 𝐶 } ≠ ∅ ↔ ¬ { 𝐴 , 𝐵 , 𝐶 } = ∅ ) | |
| 3 | 2 | bicomi | ⊢ ( ¬ { 𝐴 , 𝐵 , 𝐶 } = ∅ ↔ { 𝐴 , 𝐵 , 𝐶 } ≠ ∅ ) |
| 4 | 3 | orbi1i | ⊢ ( ( ¬ { 𝐴 , 𝐵 , 𝐶 } = ∅ ∨ { 𝐴 , 𝐵 , 𝐶 } = ∅ ) ↔ ( { 𝐴 , 𝐵 , 𝐶 } ≠ ∅ ∨ { 𝐴 , 𝐵 , 𝐶 } = ∅ ) ) |
| 5 | 1 4 | mpbi | ⊢ ( { 𝐴 , 𝐵 , 𝐶 } ≠ ∅ ∨ { 𝐴 , 𝐵 , 𝐶 } = ∅ ) |
| 6 | zfregs2 | ⊢ ( { 𝐴 , 𝐵 , 𝐶 } ≠ ∅ → ¬ ∀ 𝑥 ∈ { 𝐴 , 𝐵 , 𝐶 } ∃ 𝑦 ( 𝑦 ∈ { 𝐴 , 𝐵 , 𝐶 } ∧ 𝑦 ∈ 𝑥 ) ) | |
| 7 | en3lplem2VD | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ) → ( 𝑥 ∈ { 𝐴 , 𝐵 , 𝐶 } → ∃ 𝑦 ( 𝑦 ∈ { 𝐴 , 𝐵 , 𝐶 } ∧ 𝑦 ∈ 𝑥 ) ) ) | |
| 8 | 7 | alrimiv | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ) → ∀ 𝑥 ( 𝑥 ∈ { 𝐴 , 𝐵 , 𝐶 } → ∃ 𝑦 ( 𝑦 ∈ { 𝐴 , 𝐵 , 𝐶 } ∧ 𝑦 ∈ 𝑥 ) ) ) |
| 9 | df-ral | ⊢ ( ∀ 𝑥 ∈ { 𝐴 , 𝐵 , 𝐶 } ∃ 𝑦 ( 𝑦 ∈ { 𝐴 , 𝐵 , 𝐶 } ∧ 𝑦 ∈ 𝑥 ) ↔ ∀ 𝑥 ( 𝑥 ∈ { 𝐴 , 𝐵 , 𝐶 } → ∃ 𝑦 ( 𝑦 ∈ { 𝐴 , 𝐵 , 𝐶 } ∧ 𝑦 ∈ 𝑥 ) ) ) | |
| 10 | 8 9 | sylibr | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ) → ∀ 𝑥 ∈ { 𝐴 , 𝐵 , 𝐶 } ∃ 𝑦 ( 𝑦 ∈ { 𝐴 , 𝐵 , 𝐶 } ∧ 𝑦 ∈ 𝑥 ) ) |
| 11 | 10 | con3i | ⊢ ( ¬ ∀ 𝑥 ∈ { 𝐴 , 𝐵 , 𝐶 } ∃ 𝑦 ( 𝑦 ∈ { 𝐴 , 𝐵 , 𝐶 } ∧ 𝑦 ∈ 𝑥 ) → ¬ ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ) ) |
| 12 | 6 11 | syl | ⊢ ( { 𝐴 , 𝐵 , 𝐶 } ≠ ∅ → ¬ ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ) ) |
| 13 | idn1 | ⊢ ( { 𝐴 , 𝐵 , 𝐶 } = ∅ ▶ { 𝐴 , 𝐵 , 𝐶 } = ∅ ) | |
| 14 | noel | ⊢ ¬ 𝐶 ∈ ∅ | |
| 15 | eleq2 | ⊢ ( { 𝐴 , 𝐵 , 𝐶 } = ∅ → ( 𝐶 ∈ { 𝐴 , 𝐵 , 𝐶 } ↔ 𝐶 ∈ ∅ ) ) | |
| 16 | 15 | notbid | ⊢ ( { 𝐴 , 𝐵 , 𝐶 } = ∅ → ( ¬ 𝐶 ∈ { 𝐴 , 𝐵 , 𝐶 } ↔ ¬ 𝐶 ∈ ∅ ) ) |
| 17 | 16 | biimprd | ⊢ ( { 𝐴 , 𝐵 , 𝐶 } = ∅ → ( ¬ 𝐶 ∈ ∅ → ¬ 𝐶 ∈ { 𝐴 , 𝐵 , 𝐶 } ) ) |
| 18 | 13 14 17 | e10 | ⊢ ( { 𝐴 , 𝐵 , 𝐶 } = ∅ ▶ ¬ 𝐶 ∈ { 𝐴 , 𝐵 , 𝐶 } ) |
| 19 | tpid3g | ⊢ ( 𝐶 ∈ 𝐴 → 𝐶 ∈ { 𝐴 , 𝐵 , 𝐶 } ) | |
| 20 | 19 | con3i | ⊢ ( ¬ 𝐶 ∈ { 𝐴 , 𝐵 , 𝐶 } → ¬ 𝐶 ∈ 𝐴 ) |
| 21 | 18 20 | e1a | ⊢ ( { 𝐴 , 𝐵 , 𝐶 } = ∅ ▶ ¬ 𝐶 ∈ 𝐴 ) |
| 22 | simp3 | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ) → 𝐶 ∈ 𝐴 ) | |
| 23 | 22 | con3i | ⊢ ( ¬ 𝐶 ∈ 𝐴 → ¬ ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ) ) |
| 24 | 21 23 | e1a | ⊢ ( { 𝐴 , 𝐵 , 𝐶 } = ∅ ▶ ¬ ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ) ) |
| 25 | 24 | in1 | ⊢ ( { 𝐴 , 𝐵 , 𝐶 } = ∅ → ¬ ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ) ) |
| 26 | 12 25 | jaoi | ⊢ ( ( { 𝐴 , 𝐵 , 𝐶 } ≠ ∅ ∨ { 𝐴 , 𝐵 , 𝐶 } = ∅ ) → ¬ ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ) ) |
| 27 | 5 26 | ax-mp | ⊢ ¬ ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ) |