This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Building a set with two elements. (Contributed by FL, 11-Aug-2008) (Revised by Mario Carneiro, 10-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | en2eqpr | ⊢ ( ( 𝐶 ≈ 2o ∧ 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) → ( 𝐴 ≠ 𝐵 → 𝐶 = { 𝐴 , 𝐵 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2onn | ⊢ 2o ∈ ω | |
| 2 | nnfi | ⊢ ( 2o ∈ ω → 2o ∈ Fin ) | |
| 3 | 1 2 | ax-mp | ⊢ 2o ∈ Fin |
| 4 | simpl1 | ⊢ ( ( ( 𝐶 ≈ 2o ∧ 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) ∧ 𝐴 ≠ 𝐵 ) → 𝐶 ≈ 2o ) | |
| 5 | enfii | ⊢ ( ( 2o ∈ Fin ∧ 𝐶 ≈ 2o ) → 𝐶 ∈ Fin ) | |
| 6 | 3 4 5 | sylancr | ⊢ ( ( ( 𝐶 ≈ 2o ∧ 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) ∧ 𝐴 ≠ 𝐵 ) → 𝐶 ∈ Fin ) |
| 7 | simpl2 | ⊢ ( ( ( 𝐶 ≈ 2o ∧ 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) ∧ 𝐴 ≠ 𝐵 ) → 𝐴 ∈ 𝐶 ) | |
| 8 | simpl3 | ⊢ ( ( ( 𝐶 ≈ 2o ∧ 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) ∧ 𝐴 ≠ 𝐵 ) → 𝐵 ∈ 𝐶 ) | |
| 9 | 7 8 | prssd | ⊢ ( ( ( 𝐶 ≈ 2o ∧ 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) ∧ 𝐴 ≠ 𝐵 ) → { 𝐴 , 𝐵 } ⊆ 𝐶 ) |
| 10 | enpr2 | ⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ∧ 𝐴 ≠ 𝐵 ) → { 𝐴 , 𝐵 } ≈ 2o ) | |
| 11 | 10 | 3expa | ⊢ ( ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) ∧ 𝐴 ≠ 𝐵 ) → { 𝐴 , 𝐵 } ≈ 2o ) |
| 12 | 11 | 3adantl1 | ⊢ ( ( ( 𝐶 ≈ 2o ∧ 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) ∧ 𝐴 ≠ 𝐵 ) → { 𝐴 , 𝐵 } ≈ 2o ) |
| 13 | 4 | ensymd | ⊢ ( ( ( 𝐶 ≈ 2o ∧ 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) ∧ 𝐴 ≠ 𝐵 ) → 2o ≈ 𝐶 ) |
| 14 | entr | ⊢ ( ( { 𝐴 , 𝐵 } ≈ 2o ∧ 2o ≈ 𝐶 ) → { 𝐴 , 𝐵 } ≈ 𝐶 ) | |
| 15 | 12 13 14 | syl2anc | ⊢ ( ( ( 𝐶 ≈ 2o ∧ 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) ∧ 𝐴 ≠ 𝐵 ) → { 𝐴 , 𝐵 } ≈ 𝐶 ) |
| 16 | fisseneq | ⊢ ( ( 𝐶 ∈ Fin ∧ { 𝐴 , 𝐵 } ⊆ 𝐶 ∧ { 𝐴 , 𝐵 } ≈ 𝐶 ) → { 𝐴 , 𝐵 } = 𝐶 ) | |
| 17 | 6 9 15 16 | syl3anc | ⊢ ( ( ( 𝐶 ≈ 2o ∧ 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) ∧ 𝐴 ≠ 𝐵 ) → { 𝐴 , 𝐵 } = 𝐶 ) |
| 18 | 17 | eqcomd | ⊢ ( ( ( 𝐶 ≈ 2o ∧ 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) ∧ 𝐴 ≠ 𝐵 ) → 𝐶 = { 𝐴 , 𝐵 } ) |
| 19 | 18 | ex | ⊢ ( ( 𝐶 ≈ 2o ∧ 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) → ( 𝐴 ≠ 𝐵 → 𝐶 = { 𝐴 , 𝐵 } ) ) |