This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a topology has two elements, it is the indiscrete topology. (Contributed by FL, 11-Aug-2008) (Revised by Mario Carneiro, 10-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | en2top | |- ( J e. ( TopOn ` X ) -> ( J ~~ 2o <-> ( J = { (/) , X } /\ X =/= (/) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr | |- ( ( J e. ( TopOn ` X ) /\ J ~~ 2o ) -> J ~~ 2o ) |
|
| 2 | toponss | |- ( ( J e. ( TopOn ` X ) /\ x e. J ) -> x C_ X ) |
|
| 3 | 2 | ad2ant2rl | |- ( ( ( J e. ( TopOn ` X ) /\ J ~~ 2o ) /\ ( X = (/) /\ x e. J ) ) -> x C_ X ) |
| 4 | simprl | |- ( ( ( J e. ( TopOn ` X ) /\ J ~~ 2o ) /\ ( X = (/) /\ x e. J ) ) -> X = (/) ) |
|
| 5 | sseq0 | |- ( ( x C_ X /\ X = (/) ) -> x = (/) ) |
|
| 6 | 3 4 5 | syl2anc | |- ( ( ( J e. ( TopOn ` X ) /\ J ~~ 2o ) /\ ( X = (/) /\ x e. J ) ) -> x = (/) ) |
| 7 | velsn | |- ( x e. { (/) } <-> x = (/) ) |
|
| 8 | 6 7 | sylibr | |- ( ( ( J e. ( TopOn ` X ) /\ J ~~ 2o ) /\ ( X = (/) /\ x e. J ) ) -> x e. { (/) } ) |
| 9 | 8 | expr | |- ( ( ( J e. ( TopOn ` X ) /\ J ~~ 2o ) /\ X = (/) ) -> ( x e. J -> x e. { (/) } ) ) |
| 10 | 9 | ssrdv | |- ( ( ( J e. ( TopOn ` X ) /\ J ~~ 2o ) /\ X = (/) ) -> J C_ { (/) } ) |
| 11 | topontop | |- ( J e. ( TopOn ` X ) -> J e. Top ) |
|
| 12 | 0opn | |- ( J e. Top -> (/) e. J ) |
|
| 13 | 11 12 | syl | |- ( J e. ( TopOn ` X ) -> (/) e. J ) |
| 14 | 13 | ad2antrr | |- ( ( ( J e. ( TopOn ` X ) /\ J ~~ 2o ) /\ X = (/) ) -> (/) e. J ) |
| 15 | 14 | snssd | |- ( ( ( J e. ( TopOn ` X ) /\ J ~~ 2o ) /\ X = (/) ) -> { (/) } C_ J ) |
| 16 | 10 15 | eqssd | |- ( ( ( J e. ( TopOn ` X ) /\ J ~~ 2o ) /\ X = (/) ) -> J = { (/) } ) |
| 17 | 0ex | |- (/) e. _V |
|
| 18 | 17 | ensn1 | |- { (/) } ~~ 1o |
| 19 | 16 18 | eqbrtrdi | |- ( ( ( J e. ( TopOn ` X ) /\ J ~~ 2o ) /\ X = (/) ) -> J ~~ 1o ) |
| 20 | 19 | olcd | |- ( ( ( J e. ( TopOn ` X ) /\ J ~~ 2o ) /\ X = (/) ) -> ( J = (/) \/ J ~~ 1o ) ) |
| 21 | sdom2en01 | |- ( J ~< 2o <-> ( J = (/) \/ J ~~ 1o ) ) |
|
| 22 | 20 21 | sylibr | |- ( ( ( J e. ( TopOn ` X ) /\ J ~~ 2o ) /\ X = (/) ) -> J ~< 2o ) |
| 23 | sdomnen | |- ( J ~< 2o -> -. J ~~ 2o ) |
|
| 24 | 22 23 | syl | |- ( ( ( J e. ( TopOn ` X ) /\ J ~~ 2o ) /\ X = (/) ) -> -. J ~~ 2o ) |
| 25 | 24 | ex | |- ( ( J e. ( TopOn ` X ) /\ J ~~ 2o ) -> ( X = (/) -> -. J ~~ 2o ) ) |
| 26 | 25 | necon2ad | |- ( ( J e. ( TopOn ` X ) /\ J ~~ 2o ) -> ( J ~~ 2o -> X =/= (/) ) ) |
| 27 | 1 26 | mpd | |- ( ( J e. ( TopOn ` X ) /\ J ~~ 2o ) -> X =/= (/) ) |
| 28 | 27 | necomd | |- ( ( J e. ( TopOn ` X ) /\ J ~~ 2o ) -> (/) =/= X ) |
| 29 | 13 | adantr | |- ( ( J e. ( TopOn ` X ) /\ J ~~ 2o ) -> (/) e. J ) |
| 30 | toponmax | |- ( J e. ( TopOn ` X ) -> X e. J ) |
|
| 31 | 30 | adantr | |- ( ( J e. ( TopOn ` X ) /\ J ~~ 2o ) -> X e. J ) |
| 32 | en2eqpr | |- ( ( J ~~ 2o /\ (/) e. J /\ X e. J ) -> ( (/) =/= X -> J = { (/) , X } ) ) |
|
| 33 | 1 29 31 32 | syl3anc | |- ( ( J e. ( TopOn ` X ) /\ J ~~ 2o ) -> ( (/) =/= X -> J = { (/) , X } ) ) |
| 34 | 28 33 | mpd | |- ( ( J e. ( TopOn ` X ) /\ J ~~ 2o ) -> J = { (/) , X } ) |
| 35 | 34 27 | jca | |- ( ( J e. ( TopOn ` X ) /\ J ~~ 2o ) -> ( J = { (/) , X } /\ X =/= (/) ) ) |
| 36 | simprl | |- ( ( J e. ( TopOn ` X ) /\ ( J = { (/) , X } /\ X =/= (/) ) ) -> J = { (/) , X } ) |
|
| 37 | simprr | |- ( ( J e. ( TopOn ` X ) /\ ( J = { (/) , X } /\ X =/= (/) ) ) -> X =/= (/) ) |
|
| 38 | 37 | necomd | |- ( ( J e. ( TopOn ` X ) /\ ( J = { (/) , X } /\ X =/= (/) ) ) -> (/) =/= X ) |
| 39 | enpr2 | |- ( ( (/) e. _V /\ X e. J /\ (/) =/= X ) -> { (/) , X } ~~ 2o ) |
|
| 40 | 17 30 38 39 | mp3an2ani | |- ( ( J e. ( TopOn ` X ) /\ ( J = { (/) , X } /\ X =/= (/) ) ) -> { (/) , X } ~~ 2o ) |
| 41 | 36 40 | eqbrtrd | |- ( ( J e. ( TopOn ` X ) /\ ( J = { (/) , X } /\ X =/= (/) ) ) -> J ~~ 2o ) |
| 42 | 35 41 | impbida | |- ( J e. ( TopOn ` X ) -> ( J ~~ 2o <-> ( J = { (/) , X } /\ X =/= (/) ) ) ) |