This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in a topology generated by a basis. (Contributed by NM, 15-Jul-2006) (Revised by Mario Carneiro, 10-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eltg2 | ⊢ ( 𝐵 ∈ 𝑉 → ( 𝐴 ∈ ( topGen ‘ 𝐵 ) ↔ ( 𝐴 ⊆ ∪ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 ( 𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝐴 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tgval2 | ⊢ ( 𝐵 ∈ 𝑉 → ( topGen ‘ 𝐵 ) = { 𝑧 ∣ ( 𝑧 ⊆ ∪ 𝐵 ∧ ∀ 𝑥 ∈ 𝑧 ∃ 𝑦 ∈ 𝐵 ( 𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑧 ) ) } ) | |
| 2 | 1 | eleq2d | ⊢ ( 𝐵 ∈ 𝑉 → ( 𝐴 ∈ ( topGen ‘ 𝐵 ) ↔ 𝐴 ∈ { 𝑧 ∣ ( 𝑧 ⊆ ∪ 𝐵 ∧ ∀ 𝑥 ∈ 𝑧 ∃ 𝑦 ∈ 𝐵 ( 𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑧 ) ) } ) ) |
| 3 | elex | ⊢ ( 𝐴 ∈ { 𝑧 ∣ ( 𝑧 ⊆ ∪ 𝐵 ∧ ∀ 𝑥 ∈ 𝑧 ∃ 𝑦 ∈ 𝐵 ( 𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑧 ) ) } → 𝐴 ∈ V ) | |
| 4 | 3 | adantl | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 ∈ { 𝑧 ∣ ( 𝑧 ⊆ ∪ 𝐵 ∧ ∀ 𝑥 ∈ 𝑧 ∃ 𝑦 ∈ 𝐵 ( 𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑧 ) ) } ) → 𝐴 ∈ V ) |
| 5 | uniexg | ⊢ ( 𝐵 ∈ 𝑉 → ∪ 𝐵 ∈ V ) | |
| 6 | ssexg | ⊢ ( ( 𝐴 ⊆ ∪ 𝐵 ∧ ∪ 𝐵 ∈ V ) → 𝐴 ∈ V ) | |
| 7 | 5 6 | sylan2 | ⊢ ( ( 𝐴 ⊆ ∪ 𝐵 ∧ 𝐵 ∈ 𝑉 ) → 𝐴 ∈ V ) |
| 8 | 7 | ancoms | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ ∪ 𝐵 ) → 𝐴 ∈ V ) |
| 9 | 8 | adantrr | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ ( 𝐴 ⊆ ∪ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 ( 𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝐴 ) ) ) → 𝐴 ∈ V ) |
| 10 | sseq1 | ⊢ ( 𝑧 = 𝐴 → ( 𝑧 ⊆ ∪ 𝐵 ↔ 𝐴 ⊆ ∪ 𝐵 ) ) | |
| 11 | sseq2 | ⊢ ( 𝑧 = 𝐴 → ( 𝑦 ⊆ 𝑧 ↔ 𝑦 ⊆ 𝐴 ) ) | |
| 12 | 11 | anbi2d | ⊢ ( 𝑧 = 𝐴 → ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑧 ) ↔ ( 𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝐴 ) ) ) |
| 13 | 12 | rexbidv | ⊢ ( 𝑧 = 𝐴 → ( ∃ 𝑦 ∈ 𝐵 ( 𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑧 ) ↔ ∃ 𝑦 ∈ 𝐵 ( 𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝐴 ) ) ) |
| 14 | 13 | raleqbi1dv | ⊢ ( 𝑧 = 𝐴 → ( ∀ 𝑥 ∈ 𝑧 ∃ 𝑦 ∈ 𝐵 ( 𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑧 ) ↔ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 ( 𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝐴 ) ) ) |
| 15 | 10 14 | anbi12d | ⊢ ( 𝑧 = 𝐴 → ( ( 𝑧 ⊆ ∪ 𝐵 ∧ ∀ 𝑥 ∈ 𝑧 ∃ 𝑦 ∈ 𝐵 ( 𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑧 ) ) ↔ ( 𝐴 ⊆ ∪ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 ( 𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝐴 ) ) ) ) |
| 16 | 15 | elabg | ⊢ ( 𝐴 ∈ V → ( 𝐴 ∈ { 𝑧 ∣ ( 𝑧 ⊆ ∪ 𝐵 ∧ ∀ 𝑥 ∈ 𝑧 ∃ 𝑦 ∈ 𝐵 ( 𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑧 ) ) } ↔ ( 𝐴 ⊆ ∪ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 ( 𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝐴 ) ) ) ) |
| 17 | 4 9 16 | pm5.21nd | ⊢ ( 𝐵 ∈ 𝑉 → ( 𝐴 ∈ { 𝑧 ∣ ( 𝑧 ⊆ ∪ 𝐵 ∧ ∀ 𝑥 ∈ 𝑧 ∃ 𝑦 ∈ 𝐵 ( 𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑧 ) ) } ↔ ( 𝐴 ⊆ ∪ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 ( 𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝐴 ) ) ) ) |
| 18 | 2 17 | bitrd | ⊢ ( 𝐵 ∈ 𝑉 → ( 𝐴 ∈ ( topGen ‘ 𝐵 ) ↔ ( 𝐴 ⊆ ∪ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 ( 𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝐴 ) ) ) ) |