This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the quotient topology function. (Contributed by Mario Carneiro, 23-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | qtopval.1 | |- X = U. J |
|
| Assertion | elqtop | |- ( ( J e. V /\ F : Z -onto-> Y /\ Z C_ X ) -> ( A e. ( J qTop F ) <-> ( A C_ Y /\ ( `' F " A ) e. J ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qtopval.1 | |- X = U. J |
|
| 2 | 1 | qtopval2 | |- ( ( J e. V /\ F : Z -onto-> Y /\ Z C_ X ) -> ( J qTop F ) = { s e. ~P Y | ( `' F " s ) e. J } ) |
| 3 | 2 | eleq2d | |- ( ( J e. V /\ F : Z -onto-> Y /\ Z C_ X ) -> ( A e. ( J qTop F ) <-> A e. { s e. ~P Y | ( `' F " s ) e. J } ) ) |
| 4 | imaeq2 | |- ( s = A -> ( `' F " s ) = ( `' F " A ) ) |
|
| 5 | 4 | eleq1d | |- ( s = A -> ( ( `' F " s ) e. J <-> ( `' F " A ) e. J ) ) |
| 6 | 5 | elrab | |- ( A e. { s e. ~P Y | ( `' F " s ) e. J } <-> ( A e. ~P Y /\ ( `' F " A ) e. J ) ) |
| 7 | uniexg | |- ( J e. V -> U. J e. _V ) |
|
| 8 | 1 7 | eqeltrid | |- ( J e. V -> X e. _V ) |
| 9 | 8 | 3ad2ant1 | |- ( ( J e. V /\ F : Z -onto-> Y /\ Z C_ X ) -> X e. _V ) |
| 10 | simp3 | |- ( ( J e. V /\ F : Z -onto-> Y /\ Z C_ X ) -> Z C_ X ) |
|
| 11 | 9 10 | ssexd | |- ( ( J e. V /\ F : Z -onto-> Y /\ Z C_ X ) -> Z e. _V ) |
| 12 | simp2 | |- ( ( J e. V /\ F : Z -onto-> Y /\ Z C_ X ) -> F : Z -onto-> Y ) |
|
| 13 | focdmex | |- ( Z e. _V -> ( F : Z -onto-> Y -> Y e. _V ) ) |
|
| 14 | 11 12 13 | sylc | |- ( ( J e. V /\ F : Z -onto-> Y /\ Z C_ X ) -> Y e. _V ) |
| 15 | elpw2g | |- ( Y e. _V -> ( A e. ~P Y <-> A C_ Y ) ) |
|
| 16 | 14 15 | syl | |- ( ( J e. V /\ F : Z -onto-> Y /\ Z C_ X ) -> ( A e. ~P Y <-> A C_ Y ) ) |
| 17 | 16 | anbi1d | |- ( ( J e. V /\ F : Z -onto-> Y /\ Z C_ X ) -> ( ( A e. ~P Y /\ ( `' F " A ) e. J ) <-> ( A C_ Y /\ ( `' F " A ) e. J ) ) ) |
| 18 | 6 17 | bitrid | |- ( ( J e. V /\ F : Z -onto-> Y /\ Z C_ X ) -> ( A e. { s e. ~P Y | ( `' F " s ) e. J } <-> ( A C_ Y /\ ( `' F " A ) e. J ) ) ) |
| 19 | 3 18 | bitrd | |- ( ( J e. V /\ F : Z -onto-> Y /\ Z C_ X ) -> ( A e. ( J qTop F ) <-> ( A C_ Y /\ ( `' F " A ) e. J ) ) ) |