This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Operation value in an image. (Contributed by Mario Carneiro, 23-Dec-2013) (Revised by Mario Carneiro, 29-Jan-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ovelimab | ⊢ ( ( 𝐹 Fn 𝐴 ∧ ( 𝐵 × 𝐶 ) ⊆ 𝐴 ) → ( 𝐷 ∈ ( 𝐹 “ ( 𝐵 × 𝐶 ) ) ↔ ∃ 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐶 𝐷 = ( 𝑥 𝐹 𝑦 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvelimab | ⊢ ( ( 𝐹 Fn 𝐴 ∧ ( 𝐵 × 𝐶 ) ⊆ 𝐴 ) → ( 𝐷 ∈ ( 𝐹 “ ( 𝐵 × 𝐶 ) ) ↔ ∃ 𝑧 ∈ ( 𝐵 × 𝐶 ) ( 𝐹 ‘ 𝑧 ) = 𝐷 ) ) | |
| 2 | fveq2 | ⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 〈 𝑥 , 𝑦 〉 ) ) | |
| 3 | df-ov | ⊢ ( 𝑥 𝐹 𝑦 ) = ( 𝐹 ‘ 〈 𝑥 , 𝑦 〉 ) | |
| 4 | 2 3 | eqtr4di | ⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → ( 𝐹 ‘ 𝑧 ) = ( 𝑥 𝐹 𝑦 ) ) |
| 5 | 4 | eqeq1d | ⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → ( ( 𝐹 ‘ 𝑧 ) = 𝐷 ↔ ( 𝑥 𝐹 𝑦 ) = 𝐷 ) ) |
| 6 | eqcom | ⊢ ( ( 𝑥 𝐹 𝑦 ) = 𝐷 ↔ 𝐷 = ( 𝑥 𝐹 𝑦 ) ) | |
| 7 | 5 6 | bitrdi | ⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → ( ( 𝐹 ‘ 𝑧 ) = 𝐷 ↔ 𝐷 = ( 𝑥 𝐹 𝑦 ) ) ) |
| 8 | 7 | rexxp | ⊢ ( ∃ 𝑧 ∈ ( 𝐵 × 𝐶 ) ( 𝐹 ‘ 𝑧 ) = 𝐷 ↔ ∃ 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐶 𝐷 = ( 𝑥 𝐹 𝑦 ) ) |
| 9 | 1 8 | bitrdi | ⊢ ( ( 𝐹 Fn 𝐴 ∧ ( 𝐵 × 𝐶 ) ⊆ 𝐴 ) → ( 𝐷 ∈ ( 𝐹 “ ( 𝐵 × 𝐶 ) ) ↔ ∃ 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐶 𝐷 = ( 𝑥 𝐹 𝑦 ) ) ) |