This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If A is rational, then some integer multiple of it is an integer. (Contributed by NM, 7-Nov-2008) (Revised by Mario Carneiro, 22-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | qmulz | ⊢ ( 𝐴 ∈ ℚ → ∃ 𝑥 ∈ ℕ ( 𝐴 · 𝑥 ) ∈ ℤ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elq | ⊢ ( 𝐴 ∈ ℚ ↔ ∃ 𝑦 ∈ ℤ ∃ 𝑥 ∈ ℕ 𝐴 = ( 𝑦 / 𝑥 ) ) | |
| 2 | rexcom | ⊢ ( ∃ 𝑦 ∈ ℤ ∃ 𝑥 ∈ ℕ 𝐴 = ( 𝑦 / 𝑥 ) ↔ ∃ 𝑥 ∈ ℕ ∃ 𝑦 ∈ ℤ 𝐴 = ( 𝑦 / 𝑥 ) ) | |
| 3 | zcn | ⊢ ( 𝑦 ∈ ℤ → 𝑦 ∈ ℂ ) | |
| 4 | 3 | adantl | ⊢ ( ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℤ ) → 𝑦 ∈ ℂ ) |
| 5 | nncn | ⊢ ( 𝑥 ∈ ℕ → 𝑥 ∈ ℂ ) | |
| 6 | 5 | adantr | ⊢ ( ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℤ ) → 𝑥 ∈ ℂ ) |
| 7 | nnne0 | ⊢ ( 𝑥 ∈ ℕ → 𝑥 ≠ 0 ) | |
| 8 | 7 | adantr | ⊢ ( ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℤ ) → 𝑥 ≠ 0 ) |
| 9 | 4 6 8 | divcan1d | ⊢ ( ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℤ ) → ( ( 𝑦 / 𝑥 ) · 𝑥 ) = 𝑦 ) |
| 10 | simpr | ⊢ ( ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℤ ) → 𝑦 ∈ ℤ ) | |
| 11 | 9 10 | eqeltrd | ⊢ ( ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℤ ) → ( ( 𝑦 / 𝑥 ) · 𝑥 ) ∈ ℤ ) |
| 12 | oveq1 | ⊢ ( 𝐴 = ( 𝑦 / 𝑥 ) → ( 𝐴 · 𝑥 ) = ( ( 𝑦 / 𝑥 ) · 𝑥 ) ) | |
| 13 | 12 | eleq1d | ⊢ ( 𝐴 = ( 𝑦 / 𝑥 ) → ( ( 𝐴 · 𝑥 ) ∈ ℤ ↔ ( ( 𝑦 / 𝑥 ) · 𝑥 ) ∈ ℤ ) ) |
| 14 | 11 13 | syl5ibrcom | ⊢ ( ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℤ ) → ( 𝐴 = ( 𝑦 / 𝑥 ) → ( 𝐴 · 𝑥 ) ∈ ℤ ) ) |
| 15 | 14 | rexlimdva | ⊢ ( 𝑥 ∈ ℕ → ( ∃ 𝑦 ∈ ℤ 𝐴 = ( 𝑦 / 𝑥 ) → ( 𝐴 · 𝑥 ) ∈ ℤ ) ) |
| 16 | 15 | reximia | ⊢ ( ∃ 𝑥 ∈ ℕ ∃ 𝑦 ∈ ℤ 𝐴 = ( 𝑦 / 𝑥 ) → ∃ 𝑥 ∈ ℕ ( 𝐴 · 𝑥 ) ∈ ℤ ) |
| 17 | 2 16 | sylbi | ⊢ ( ∃ 𝑦 ∈ ℤ ∃ 𝑥 ∈ ℕ 𝐴 = ( 𝑦 / 𝑥 ) → ∃ 𝑥 ∈ ℕ ( 𝐴 · 𝑥 ) ∈ ℤ ) |
| 18 | 1 17 | sylbi | ⊢ ( 𝐴 ∈ ℚ → ∃ 𝑥 ∈ ℕ ( 𝐴 · 𝑥 ) ∈ ℤ ) |