This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A class is a positive rational iff it is the quotient of two positive integers. (Contributed by AV, 30-Dec-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elpqb | ⊢ ( ( 𝐴 ∈ ℚ ∧ 0 < 𝐴 ) ↔ ∃ 𝑥 ∈ ℕ ∃ 𝑦 ∈ ℕ 𝐴 = ( 𝑥 / 𝑦 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpq | ⊢ ( ( 𝐴 ∈ ℚ ∧ 0 < 𝐴 ) → ∃ 𝑥 ∈ ℕ ∃ 𝑦 ∈ ℕ 𝐴 = ( 𝑥 / 𝑦 ) ) | |
| 2 | nnz | ⊢ ( 𝑥 ∈ ℕ → 𝑥 ∈ ℤ ) | |
| 3 | znq | ⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) → ( 𝑥 / 𝑦 ) ∈ ℚ ) | |
| 4 | 2 3 | sylan | ⊢ ( ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ) → ( 𝑥 / 𝑦 ) ∈ ℚ ) |
| 5 | nnre | ⊢ ( 𝑥 ∈ ℕ → 𝑥 ∈ ℝ ) | |
| 6 | nngt0 | ⊢ ( 𝑥 ∈ ℕ → 0 < 𝑥 ) | |
| 7 | 5 6 | jca | ⊢ ( 𝑥 ∈ ℕ → ( 𝑥 ∈ ℝ ∧ 0 < 𝑥 ) ) |
| 8 | nnre | ⊢ ( 𝑦 ∈ ℕ → 𝑦 ∈ ℝ ) | |
| 9 | nngt0 | ⊢ ( 𝑦 ∈ ℕ → 0 < 𝑦 ) | |
| 10 | 8 9 | jca | ⊢ ( 𝑦 ∈ ℕ → ( 𝑦 ∈ ℝ ∧ 0 < 𝑦 ) ) |
| 11 | divgt0 | ⊢ ( ( ( 𝑥 ∈ ℝ ∧ 0 < 𝑥 ) ∧ ( 𝑦 ∈ ℝ ∧ 0 < 𝑦 ) ) → 0 < ( 𝑥 / 𝑦 ) ) | |
| 12 | 7 10 11 | syl2an | ⊢ ( ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ) → 0 < ( 𝑥 / 𝑦 ) ) |
| 13 | 4 12 | jca | ⊢ ( ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ) → ( ( 𝑥 / 𝑦 ) ∈ ℚ ∧ 0 < ( 𝑥 / 𝑦 ) ) ) |
| 14 | eleq1 | ⊢ ( 𝐴 = ( 𝑥 / 𝑦 ) → ( 𝐴 ∈ ℚ ↔ ( 𝑥 / 𝑦 ) ∈ ℚ ) ) | |
| 15 | breq2 | ⊢ ( 𝐴 = ( 𝑥 / 𝑦 ) → ( 0 < 𝐴 ↔ 0 < ( 𝑥 / 𝑦 ) ) ) | |
| 16 | 14 15 | anbi12d | ⊢ ( 𝐴 = ( 𝑥 / 𝑦 ) → ( ( 𝐴 ∈ ℚ ∧ 0 < 𝐴 ) ↔ ( ( 𝑥 / 𝑦 ) ∈ ℚ ∧ 0 < ( 𝑥 / 𝑦 ) ) ) ) |
| 17 | 13 16 | syl5ibrcom | ⊢ ( ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ) → ( 𝐴 = ( 𝑥 / 𝑦 ) → ( 𝐴 ∈ ℚ ∧ 0 < 𝐴 ) ) ) |
| 18 | 17 | rexlimivv | ⊢ ( ∃ 𝑥 ∈ ℕ ∃ 𝑦 ∈ ℕ 𝐴 = ( 𝑥 / 𝑦 ) → ( 𝐴 ∈ ℚ ∧ 0 < 𝐴 ) ) |
| 19 | 1 18 | impbii | ⊢ ( ( 𝐴 ∈ ℚ ∧ 0 < 𝐴 ) ↔ ∃ 𝑥 ∈ ℕ ∃ 𝑦 ∈ ℕ 𝐴 = ( 𝑥 / 𝑦 ) ) |