This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Division of a positive number by a positive number. (Contributed by NM, 28-Sep-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | gt0div | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) → ( 0 < 𝐴 ↔ 0 < ( 𝐴 / 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0re | ⊢ 0 ∈ ℝ | |
| 2 | ltdiv1 | ⊢ ( ( 0 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → ( 0 < 𝐴 ↔ ( 0 / 𝐵 ) < ( 𝐴 / 𝐵 ) ) ) | |
| 3 | 1 2 | mp3an1 | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → ( 0 < 𝐴 ↔ ( 0 / 𝐵 ) < ( 𝐴 / 𝐵 ) ) ) |
| 4 | 3 | 3impb | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) → ( 0 < 𝐴 ↔ ( 0 / 𝐵 ) < ( 𝐴 / 𝐵 ) ) ) |
| 5 | recn | ⊢ ( 𝐵 ∈ ℝ → 𝐵 ∈ ℂ ) | |
| 6 | gt0ne0 | ⊢ ( ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) → 𝐵 ≠ 0 ) | |
| 7 | div0 | ⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( 0 / 𝐵 ) = 0 ) | |
| 8 | 5 6 7 | syl2an2r | ⊢ ( ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) → ( 0 / 𝐵 ) = 0 ) |
| 9 | 8 | breq1d | ⊢ ( ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) → ( ( 0 / 𝐵 ) < ( 𝐴 / 𝐵 ) ↔ 0 < ( 𝐴 / 𝐵 ) ) ) |
| 10 | 9 | 3adant1 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) → ( ( 0 / 𝐵 ) < ( 𝐴 / 𝐵 ) ↔ 0 < ( 𝐴 / 𝐵 ) ) ) |
| 11 | 4 10 | bitrd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) → ( 0 < 𝐴 ↔ 0 < ( 𝐴 / 𝐵 ) ) ) |