This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Elementhood in the orthocomplement of a subset (normally a subspace) of a pre-Hilbert space. (Contributed by Mario Carneiro, 13-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ocvfval.v | |- V = ( Base ` W ) |
|
| ocvfval.i | |- ., = ( .i ` W ) |
||
| ocvfval.f | |- F = ( Scalar ` W ) |
||
| ocvfval.z | |- .0. = ( 0g ` F ) |
||
| ocvfval.o | |- ._|_ = ( ocv ` W ) |
||
| Assertion | elocv | |- ( A e. ( ._|_ ` S ) <-> ( S C_ V /\ A e. V /\ A. x e. S ( A ., x ) = .0. ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ocvfval.v | |- V = ( Base ` W ) |
|
| 2 | ocvfval.i | |- ., = ( .i ` W ) |
|
| 3 | ocvfval.f | |- F = ( Scalar ` W ) |
|
| 4 | ocvfval.z | |- .0. = ( 0g ` F ) |
|
| 5 | ocvfval.o | |- ._|_ = ( ocv ` W ) |
|
| 6 | elfvdm | |- ( A e. ( ._|_ ` S ) -> S e. dom ._|_ ) |
|
| 7 | n0i | |- ( A e. ( ._|_ ` S ) -> -. ( ._|_ ` S ) = (/) ) |
|
| 8 | fvprc | |- ( -. W e. _V -> ( ocv ` W ) = (/) ) |
|
| 9 | 5 8 | eqtrid | |- ( -. W e. _V -> ._|_ = (/) ) |
| 10 | 9 | fveq1d | |- ( -. W e. _V -> ( ._|_ ` S ) = ( (/) ` S ) ) |
| 11 | 0fv | |- ( (/) ` S ) = (/) |
|
| 12 | 10 11 | eqtrdi | |- ( -. W e. _V -> ( ._|_ ` S ) = (/) ) |
| 13 | 7 12 | nsyl2 | |- ( A e. ( ._|_ ` S ) -> W e. _V ) |
| 14 | 1 2 3 4 5 | ocvfval | |- ( W e. _V -> ._|_ = ( s e. ~P V |-> { y e. V | A. x e. s ( y ., x ) = .0. } ) ) |
| 15 | 13 14 | syl | |- ( A e. ( ._|_ ` S ) -> ._|_ = ( s e. ~P V |-> { y e. V | A. x e. s ( y ., x ) = .0. } ) ) |
| 16 | 15 | dmeqd | |- ( A e. ( ._|_ ` S ) -> dom ._|_ = dom ( s e. ~P V |-> { y e. V | A. x e. s ( y ., x ) = .0. } ) ) |
| 17 | 1 | fvexi | |- V e. _V |
| 18 | 17 | rabex | |- { y e. V | A. x e. s ( y ., x ) = .0. } e. _V |
| 19 | eqid | |- ( s e. ~P V |-> { y e. V | A. x e. s ( y ., x ) = .0. } ) = ( s e. ~P V |-> { y e. V | A. x e. s ( y ., x ) = .0. } ) |
|
| 20 | 18 19 | dmmpti | |- dom ( s e. ~P V |-> { y e. V | A. x e. s ( y ., x ) = .0. } ) = ~P V |
| 21 | 16 20 | eqtrdi | |- ( A e. ( ._|_ ` S ) -> dom ._|_ = ~P V ) |
| 22 | 6 21 | eleqtrd | |- ( A e. ( ._|_ ` S ) -> S e. ~P V ) |
| 23 | 22 | elpwid | |- ( A e. ( ._|_ ` S ) -> S C_ V ) |
| 24 | 1 2 3 4 5 | ocvval | |- ( S C_ V -> ( ._|_ ` S ) = { y e. V | A. x e. S ( y ., x ) = .0. } ) |
| 25 | 24 | eleq2d | |- ( S C_ V -> ( A e. ( ._|_ ` S ) <-> A e. { y e. V | A. x e. S ( y ., x ) = .0. } ) ) |
| 26 | oveq1 | |- ( y = A -> ( y ., x ) = ( A ., x ) ) |
|
| 27 | 26 | eqeq1d | |- ( y = A -> ( ( y ., x ) = .0. <-> ( A ., x ) = .0. ) ) |
| 28 | 27 | ralbidv | |- ( y = A -> ( A. x e. S ( y ., x ) = .0. <-> A. x e. S ( A ., x ) = .0. ) ) |
| 29 | 28 | elrab | |- ( A e. { y e. V | A. x e. S ( y ., x ) = .0. } <-> ( A e. V /\ A. x e. S ( A ., x ) = .0. ) ) |
| 30 | 25 29 | bitrdi | |- ( S C_ V -> ( A e. ( ._|_ ` S ) <-> ( A e. V /\ A. x e. S ( A ., x ) = .0. ) ) ) |
| 31 | 23 30 | biadanii | |- ( A e. ( ._|_ ` S ) <-> ( S C_ V /\ ( A e. V /\ A. x e. S ( A ., x ) = .0. ) ) ) |
| 32 | 3anass | |- ( ( S C_ V /\ A e. V /\ A. x e. S ( A ., x ) = .0. ) <-> ( S C_ V /\ ( A e. V /\ A. x e. S ( A ., x ) = .0. ) ) ) |
|
| 33 | 31 32 | bitr4i | |- ( A e. ( ._|_ ` S ) <-> ( S C_ V /\ A e. V /\ A. x e. S ( A ., x ) = .0. ) ) |