This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The orthocomplement operation. (Contributed by NM, 7-Oct-2011) (Revised by Mario Carneiro, 13-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ocvfval.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| ocvfval.i | ⊢ , = ( ·𝑖 ‘ 𝑊 ) | ||
| ocvfval.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | ||
| ocvfval.z | ⊢ 0 = ( 0g ‘ 𝐹 ) | ||
| ocvfval.o | ⊢ ⊥ = ( ocv ‘ 𝑊 ) | ||
| Assertion | ocvfval | ⊢ ( 𝑊 ∈ 𝑋 → ⊥ = ( 𝑠 ∈ 𝒫 𝑉 ↦ { 𝑥 ∈ 𝑉 ∣ ∀ 𝑦 ∈ 𝑠 ( 𝑥 , 𝑦 ) = 0 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ocvfval.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | ocvfval.i | ⊢ , = ( ·𝑖 ‘ 𝑊 ) | |
| 3 | ocvfval.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| 4 | ocvfval.z | ⊢ 0 = ( 0g ‘ 𝐹 ) | |
| 5 | ocvfval.o | ⊢ ⊥ = ( ocv ‘ 𝑊 ) | |
| 6 | elex | ⊢ ( 𝑊 ∈ 𝑋 → 𝑊 ∈ V ) | |
| 7 | fveq2 | ⊢ ( ℎ = 𝑊 → ( Base ‘ ℎ ) = ( Base ‘ 𝑊 ) ) | |
| 8 | 7 1 | eqtr4di | ⊢ ( ℎ = 𝑊 → ( Base ‘ ℎ ) = 𝑉 ) |
| 9 | 8 | pweqd | ⊢ ( ℎ = 𝑊 → 𝒫 ( Base ‘ ℎ ) = 𝒫 𝑉 ) |
| 10 | fveq2 | ⊢ ( ℎ = 𝑊 → ( ·𝑖 ‘ ℎ ) = ( ·𝑖 ‘ 𝑊 ) ) | |
| 11 | 10 2 | eqtr4di | ⊢ ( ℎ = 𝑊 → ( ·𝑖 ‘ ℎ ) = , ) |
| 12 | 11 | oveqd | ⊢ ( ℎ = 𝑊 → ( 𝑥 ( ·𝑖 ‘ ℎ ) 𝑦 ) = ( 𝑥 , 𝑦 ) ) |
| 13 | fveq2 | ⊢ ( ℎ = 𝑊 → ( Scalar ‘ ℎ ) = ( Scalar ‘ 𝑊 ) ) | |
| 14 | 13 3 | eqtr4di | ⊢ ( ℎ = 𝑊 → ( Scalar ‘ ℎ ) = 𝐹 ) |
| 15 | 14 | fveq2d | ⊢ ( ℎ = 𝑊 → ( 0g ‘ ( Scalar ‘ ℎ ) ) = ( 0g ‘ 𝐹 ) ) |
| 16 | 15 4 | eqtr4di | ⊢ ( ℎ = 𝑊 → ( 0g ‘ ( Scalar ‘ ℎ ) ) = 0 ) |
| 17 | 12 16 | eqeq12d | ⊢ ( ℎ = 𝑊 → ( ( 𝑥 ( ·𝑖 ‘ ℎ ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ ℎ ) ) ↔ ( 𝑥 , 𝑦 ) = 0 ) ) |
| 18 | 17 | ralbidv | ⊢ ( ℎ = 𝑊 → ( ∀ 𝑦 ∈ 𝑠 ( 𝑥 ( ·𝑖 ‘ ℎ ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ ℎ ) ) ↔ ∀ 𝑦 ∈ 𝑠 ( 𝑥 , 𝑦 ) = 0 ) ) |
| 19 | 8 18 | rabeqbidv | ⊢ ( ℎ = 𝑊 → { 𝑥 ∈ ( Base ‘ ℎ ) ∣ ∀ 𝑦 ∈ 𝑠 ( 𝑥 ( ·𝑖 ‘ ℎ ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ ℎ ) ) } = { 𝑥 ∈ 𝑉 ∣ ∀ 𝑦 ∈ 𝑠 ( 𝑥 , 𝑦 ) = 0 } ) |
| 20 | 9 19 | mpteq12dv | ⊢ ( ℎ = 𝑊 → ( 𝑠 ∈ 𝒫 ( Base ‘ ℎ ) ↦ { 𝑥 ∈ ( Base ‘ ℎ ) ∣ ∀ 𝑦 ∈ 𝑠 ( 𝑥 ( ·𝑖 ‘ ℎ ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ ℎ ) ) } ) = ( 𝑠 ∈ 𝒫 𝑉 ↦ { 𝑥 ∈ 𝑉 ∣ ∀ 𝑦 ∈ 𝑠 ( 𝑥 , 𝑦 ) = 0 } ) ) |
| 21 | df-ocv | ⊢ ocv = ( ℎ ∈ V ↦ ( 𝑠 ∈ 𝒫 ( Base ‘ ℎ ) ↦ { 𝑥 ∈ ( Base ‘ ℎ ) ∣ ∀ 𝑦 ∈ 𝑠 ( 𝑥 ( ·𝑖 ‘ ℎ ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ ℎ ) ) } ) ) | |
| 22 | eqid | ⊢ ( 𝑠 ∈ 𝒫 𝑉 ↦ { 𝑥 ∈ 𝑉 ∣ ∀ 𝑦 ∈ 𝑠 ( 𝑥 , 𝑦 ) = 0 } ) = ( 𝑠 ∈ 𝒫 𝑉 ↦ { 𝑥 ∈ 𝑉 ∣ ∀ 𝑦 ∈ 𝑠 ( 𝑥 , 𝑦 ) = 0 } ) | |
| 23 | 1 | fvexi | ⊢ 𝑉 ∈ V |
| 24 | ssrab2 | ⊢ { 𝑥 ∈ 𝑉 ∣ ∀ 𝑦 ∈ 𝑠 ( 𝑥 , 𝑦 ) = 0 } ⊆ 𝑉 | |
| 25 | 23 24 | elpwi2 | ⊢ { 𝑥 ∈ 𝑉 ∣ ∀ 𝑦 ∈ 𝑠 ( 𝑥 , 𝑦 ) = 0 } ∈ 𝒫 𝑉 |
| 26 | 25 | a1i | ⊢ ( 𝑠 ∈ 𝒫 𝑉 → { 𝑥 ∈ 𝑉 ∣ ∀ 𝑦 ∈ 𝑠 ( 𝑥 , 𝑦 ) = 0 } ∈ 𝒫 𝑉 ) |
| 27 | 22 26 | fmpti | ⊢ ( 𝑠 ∈ 𝒫 𝑉 ↦ { 𝑥 ∈ 𝑉 ∣ ∀ 𝑦 ∈ 𝑠 ( 𝑥 , 𝑦 ) = 0 } ) : 𝒫 𝑉 ⟶ 𝒫 𝑉 |
| 28 | 23 | pwex | ⊢ 𝒫 𝑉 ∈ V |
| 29 | fex2 | ⊢ ( ( ( 𝑠 ∈ 𝒫 𝑉 ↦ { 𝑥 ∈ 𝑉 ∣ ∀ 𝑦 ∈ 𝑠 ( 𝑥 , 𝑦 ) = 0 } ) : 𝒫 𝑉 ⟶ 𝒫 𝑉 ∧ 𝒫 𝑉 ∈ V ∧ 𝒫 𝑉 ∈ V ) → ( 𝑠 ∈ 𝒫 𝑉 ↦ { 𝑥 ∈ 𝑉 ∣ ∀ 𝑦 ∈ 𝑠 ( 𝑥 , 𝑦 ) = 0 } ) ∈ V ) | |
| 30 | 27 28 28 29 | mp3an | ⊢ ( 𝑠 ∈ 𝒫 𝑉 ↦ { 𝑥 ∈ 𝑉 ∣ ∀ 𝑦 ∈ 𝑠 ( 𝑥 , 𝑦 ) = 0 } ) ∈ V |
| 31 | 20 21 30 | fvmpt | ⊢ ( 𝑊 ∈ V → ( ocv ‘ 𝑊 ) = ( 𝑠 ∈ 𝒫 𝑉 ↦ { 𝑥 ∈ 𝑉 ∣ ∀ 𝑦 ∈ 𝑠 ( 𝑥 , 𝑦 ) = 0 } ) ) |
| 32 | 6 31 | syl | ⊢ ( 𝑊 ∈ 𝑋 → ( ocv ‘ 𝑊 ) = ( 𝑠 ∈ 𝒫 𝑉 ↦ { 𝑥 ∈ 𝑉 ∣ ∀ 𝑦 ∈ 𝑠 ( 𝑥 , 𝑦 ) = 0 } ) ) |
| 33 | 5 32 | eqtrid | ⊢ ( 𝑊 ∈ 𝑋 → ⊥ = ( 𝑠 ∈ 𝒫 𝑉 ↦ { 𝑥 ∈ 𝑉 ∣ ∀ 𝑦 ∈ 𝑠 ( 𝑥 , 𝑦 ) = 0 } ) ) |