This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A member of the span of the singleton of a vector is a member of a subspace containing the vector. ( elspansn4 analog.) (Contributed by NM, 4-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ellspsn4.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| ellspsn4.o | ⊢ 0 = ( 0g ‘ 𝑊 ) | ||
| ellspsn4.s | ⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) | ||
| ellspsn4.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | ||
| ellspsn4.w | ⊢ ( 𝜑 → 𝑊 ∈ LVec ) | ||
| ellspsn4.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑆 ) | ||
| ellspsn4.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | ||
| ellspsn4.y | ⊢ ( 𝜑 → 𝑌 ∈ ( 𝑁 ‘ { 𝑋 } ) ) | ||
| ellspsn4.z | ⊢ ( 𝜑 → 𝑌 ≠ 0 ) | ||
| Assertion | ellspsn4 | ⊢ ( 𝜑 → ( 𝑋 ∈ 𝑈 ↔ 𝑌 ∈ 𝑈 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ellspsn4.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | ellspsn4.o | ⊢ 0 = ( 0g ‘ 𝑊 ) | |
| 3 | ellspsn4.s | ⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) | |
| 4 | ellspsn4.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | |
| 5 | ellspsn4.w | ⊢ ( 𝜑 → 𝑊 ∈ LVec ) | |
| 6 | ellspsn4.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑆 ) | |
| 7 | ellspsn4.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | |
| 8 | ellspsn4.y | ⊢ ( 𝜑 → 𝑌 ∈ ( 𝑁 ‘ { 𝑋 } ) ) | |
| 9 | ellspsn4.z | ⊢ ( 𝜑 → 𝑌 ≠ 0 ) | |
| 10 | lveclmod | ⊢ ( 𝑊 ∈ LVec → 𝑊 ∈ LMod ) | |
| 11 | 5 10 | syl | ⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
| 12 | 11 | adantr | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝑈 ) → 𝑊 ∈ LMod ) |
| 13 | 6 | adantr | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝑈 ) → 𝑈 ∈ 𝑆 ) |
| 14 | simpr | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝑈 ) → 𝑋 ∈ 𝑈 ) | |
| 15 | 8 | adantr | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝑈 ) → 𝑌 ∈ ( 𝑁 ‘ { 𝑋 } ) ) |
| 16 | 3 4 12 13 14 15 | ellspsn3 | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝑈 ) → 𝑌 ∈ 𝑈 ) |
| 17 | 11 | adantr | ⊢ ( ( 𝜑 ∧ 𝑌 ∈ 𝑈 ) → 𝑊 ∈ LMod ) |
| 18 | 6 | adantr | ⊢ ( ( 𝜑 ∧ 𝑌 ∈ 𝑈 ) → 𝑈 ∈ 𝑆 ) |
| 19 | simpr | ⊢ ( ( 𝜑 ∧ 𝑌 ∈ 𝑈 ) → 𝑌 ∈ 𝑈 ) | |
| 20 | 1 4 | lspsnid | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → 𝑋 ∈ ( 𝑁 ‘ { 𝑋 } ) ) |
| 21 | 11 7 20 | syl2anc | ⊢ ( 𝜑 → 𝑋 ∈ ( 𝑁 ‘ { 𝑋 } ) ) |
| 22 | 1 2 4 5 7 8 9 | lspsneleq | ⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑌 } ) = ( 𝑁 ‘ { 𝑋 } ) ) |
| 23 | 21 22 | eleqtrrd | ⊢ ( 𝜑 → 𝑋 ∈ ( 𝑁 ‘ { 𝑌 } ) ) |
| 24 | 23 | adantr | ⊢ ( ( 𝜑 ∧ 𝑌 ∈ 𝑈 ) → 𝑋 ∈ ( 𝑁 ‘ { 𝑌 } ) ) |
| 25 | 3 4 17 18 19 24 | ellspsn3 | ⊢ ( ( 𝜑 ∧ 𝑌 ∈ 𝑈 ) → 𝑋 ∈ 𝑈 ) |
| 26 | 16 25 | impbida | ⊢ ( 𝜑 → ( 𝑋 ∈ 𝑈 ↔ 𝑌 ∈ 𝑈 ) ) |