This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A member of the span of the singleton of a vector is a member of a subspace containing the vector. ( elspansn3 analog.) (Contributed by NM, 4-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lspsnss.s | ⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) | |
| lspsnss.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | ||
| ellspsn3.w | ⊢ ( 𝜑 → 𝑊 ∈ LMod ) | ||
| ellspsn3.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑆 ) | ||
| ellspsn3.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑈 ) | ||
| ellspsn3.y | ⊢ ( 𝜑 → 𝑌 ∈ ( 𝑁 ‘ { 𝑋 } ) ) | ||
| Assertion | ellspsn3 | ⊢ ( 𝜑 → 𝑌 ∈ 𝑈 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lspsnss.s | ⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) | |
| 2 | lspsnss.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | |
| 3 | ellspsn3.w | ⊢ ( 𝜑 → 𝑊 ∈ LMod ) | |
| 4 | ellspsn3.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑆 ) | |
| 5 | ellspsn3.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑈 ) | |
| 6 | ellspsn3.y | ⊢ ( 𝜑 → 𝑌 ∈ ( 𝑁 ‘ { 𝑋 } ) ) | |
| 7 | 1 2 | lspsnss | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑈 ) → ( 𝑁 ‘ { 𝑋 } ) ⊆ 𝑈 ) |
| 8 | 3 4 5 7 | syl3anc | ⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ⊆ 𝑈 ) |
| 9 | 8 6 | sseldd | ⊢ ( 𝜑 → 𝑌 ∈ 𝑈 ) |