This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A member of the span of the singleton of a vector is a member of a subspace containing the vector. ( elspansn4 analog.) (Contributed by NM, 4-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ellspsn4.v | ||
| ellspsn4.o | |||
| ellspsn4.s | |||
| ellspsn4.n | |||
| ellspsn4.w | |||
| ellspsn4.u | |||
| ellspsn4.x | |||
| ellspsn4.y | |||
| ellspsn4.z | |||
| Assertion | ellspsn4 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ellspsn4.v | ||
| 2 | ellspsn4.o | ||
| 3 | ellspsn4.s | ||
| 4 | ellspsn4.n | ||
| 5 | ellspsn4.w | ||
| 6 | ellspsn4.u | ||
| 7 | ellspsn4.x | ||
| 8 | ellspsn4.y | ||
| 9 | ellspsn4.z | ||
| 10 | lveclmod | ||
| 11 | 5 10 | syl | |
| 12 | 11 | adantr | |
| 13 | 6 | adantr | |
| 14 | simpr | ||
| 15 | 8 | adantr | |
| 16 | 3 4 12 13 14 15 | ellspsn3 | |
| 17 | 11 | adantr | |
| 18 | 6 | adantr | |
| 19 | simpr | ||
| 20 | 1 4 | lspsnid | |
| 21 | 11 7 20 | syl2anc | |
| 22 | 1 2 4 5 7 8 9 | lspsneleq | |
| 23 | 21 22 | eleqtrrd | |
| 24 | 23 | adantr | |
| 25 | 3 4 17 18 19 24 | ellspsn3 | |
| 26 | 16 25 | impbida |