This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A span membership condition implying two vectors belong to the same subspace. (Contributed by NM, 17-Dec-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elspansn4 | ⊢ ( ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ ℋ ) ∧ ( 𝐶 ∈ ( span ‘ { 𝐵 } ) ∧ 𝐶 ≠ 0ℎ ) ) → ( 𝐵 ∈ 𝐴 ↔ 𝐶 ∈ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elspansn3 | ⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ ( span ‘ { 𝐵 } ) ) → 𝐶 ∈ 𝐴 ) | |
| 2 | 1 | 3exp | ⊢ ( 𝐴 ∈ Sℋ → ( 𝐵 ∈ 𝐴 → ( 𝐶 ∈ ( span ‘ { 𝐵 } ) → 𝐶 ∈ 𝐴 ) ) ) |
| 3 | 2 | com23 | ⊢ ( 𝐴 ∈ Sℋ → ( 𝐶 ∈ ( span ‘ { 𝐵 } ) → ( 𝐵 ∈ 𝐴 → 𝐶 ∈ 𝐴 ) ) ) |
| 4 | 3 | imp | ⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐶 ∈ ( span ‘ { 𝐵 } ) ) → ( 𝐵 ∈ 𝐴 → 𝐶 ∈ 𝐴 ) ) |
| 5 | 4 | ad2ant2r | ⊢ ( ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ ℋ ) ∧ ( 𝐶 ∈ ( span ‘ { 𝐵 } ) ∧ 𝐶 ≠ 0ℎ ) ) → ( 𝐵 ∈ 𝐴 → 𝐶 ∈ 𝐴 ) ) |
| 6 | spansnid | ⊢ ( 𝐵 ∈ ℋ → 𝐵 ∈ ( span ‘ { 𝐵 } ) ) | |
| 7 | 6 | ad2antrr | ⊢ ( ( ( 𝐵 ∈ ℋ ∧ 𝐶 ≠ 0ℎ ) ∧ 𝐶 ∈ ( span ‘ { 𝐵 } ) ) → 𝐵 ∈ ( span ‘ { 𝐵 } ) ) |
| 8 | spansneleq | ⊢ ( ( 𝐵 ∈ ℋ ∧ 𝐶 ≠ 0ℎ ) → ( 𝐶 ∈ ( span ‘ { 𝐵 } ) → ( span ‘ { 𝐶 } ) = ( span ‘ { 𝐵 } ) ) ) | |
| 9 | 8 | imp | ⊢ ( ( ( 𝐵 ∈ ℋ ∧ 𝐶 ≠ 0ℎ ) ∧ 𝐶 ∈ ( span ‘ { 𝐵 } ) ) → ( span ‘ { 𝐶 } ) = ( span ‘ { 𝐵 } ) ) |
| 10 | 7 9 | eleqtrrd | ⊢ ( ( ( 𝐵 ∈ ℋ ∧ 𝐶 ≠ 0ℎ ) ∧ 𝐶 ∈ ( span ‘ { 𝐵 } ) ) → 𝐵 ∈ ( span ‘ { 𝐶 } ) ) |
| 11 | elspansn3 | ⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐶 ∈ 𝐴 ∧ 𝐵 ∈ ( span ‘ { 𝐶 } ) ) → 𝐵 ∈ 𝐴 ) | |
| 12 | 11 | 3expia | ⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐶 ∈ 𝐴 ) → ( 𝐵 ∈ ( span ‘ { 𝐶 } ) → 𝐵 ∈ 𝐴 ) ) |
| 13 | 10 12 | syl5 | ⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐶 ∈ 𝐴 ) → ( ( ( 𝐵 ∈ ℋ ∧ 𝐶 ≠ 0ℎ ) ∧ 𝐶 ∈ ( span ‘ { 𝐵 } ) ) → 𝐵 ∈ 𝐴 ) ) |
| 14 | 13 | exp4b | ⊢ ( 𝐴 ∈ Sℋ → ( 𝐶 ∈ 𝐴 → ( ( 𝐵 ∈ ℋ ∧ 𝐶 ≠ 0ℎ ) → ( 𝐶 ∈ ( span ‘ { 𝐵 } ) → 𝐵 ∈ 𝐴 ) ) ) ) |
| 15 | 14 | com24 | ⊢ ( 𝐴 ∈ Sℋ → ( 𝐶 ∈ ( span ‘ { 𝐵 } ) → ( ( 𝐵 ∈ ℋ ∧ 𝐶 ≠ 0ℎ ) → ( 𝐶 ∈ 𝐴 → 𝐵 ∈ 𝐴 ) ) ) ) |
| 16 | 15 | exp4a | ⊢ ( 𝐴 ∈ Sℋ → ( 𝐶 ∈ ( span ‘ { 𝐵 } ) → ( 𝐵 ∈ ℋ → ( 𝐶 ≠ 0ℎ → ( 𝐶 ∈ 𝐴 → 𝐵 ∈ 𝐴 ) ) ) ) ) |
| 17 | 16 | com23 | ⊢ ( 𝐴 ∈ Sℋ → ( 𝐵 ∈ ℋ → ( 𝐶 ∈ ( span ‘ { 𝐵 } ) → ( 𝐶 ≠ 0ℎ → ( 𝐶 ∈ 𝐴 → 𝐵 ∈ 𝐴 ) ) ) ) ) |
| 18 | 17 | imp43 | ⊢ ( ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ ℋ ) ∧ ( 𝐶 ∈ ( span ‘ { 𝐵 } ) ∧ 𝐶 ≠ 0ℎ ) ) → ( 𝐶 ∈ 𝐴 → 𝐵 ∈ 𝐴 ) ) |
| 19 | 5 18 | impbid | ⊢ ( ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ ℋ ) ∧ ( 𝐶 ∈ ( span ‘ { 𝐵 } ) ∧ 𝐶 ≠ 0ℎ ) ) → ( 𝐵 ∈ 𝐴 ↔ 𝐶 ∈ 𝐴 ) ) |