This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A member of the span of the singleton of a vector is a member of a subspace containing the vector. ( elspansn4 analog.) (Contributed by NM, 4-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ellspsn4.v | |- V = ( Base ` W ) |
|
| ellspsn4.o | |- .0. = ( 0g ` W ) |
||
| ellspsn4.s | |- S = ( LSubSp ` W ) |
||
| ellspsn4.n | |- N = ( LSpan ` W ) |
||
| ellspsn4.w | |- ( ph -> W e. LVec ) |
||
| ellspsn4.u | |- ( ph -> U e. S ) |
||
| ellspsn4.x | |- ( ph -> X e. V ) |
||
| ellspsn4.y | |- ( ph -> Y e. ( N ` { X } ) ) |
||
| ellspsn4.z | |- ( ph -> Y =/= .0. ) |
||
| Assertion | ellspsn4 | |- ( ph -> ( X e. U <-> Y e. U ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ellspsn4.v | |- V = ( Base ` W ) |
|
| 2 | ellspsn4.o | |- .0. = ( 0g ` W ) |
|
| 3 | ellspsn4.s | |- S = ( LSubSp ` W ) |
|
| 4 | ellspsn4.n | |- N = ( LSpan ` W ) |
|
| 5 | ellspsn4.w | |- ( ph -> W e. LVec ) |
|
| 6 | ellspsn4.u | |- ( ph -> U e. S ) |
|
| 7 | ellspsn4.x | |- ( ph -> X e. V ) |
|
| 8 | ellspsn4.y | |- ( ph -> Y e. ( N ` { X } ) ) |
|
| 9 | ellspsn4.z | |- ( ph -> Y =/= .0. ) |
|
| 10 | lveclmod | |- ( W e. LVec -> W e. LMod ) |
|
| 11 | 5 10 | syl | |- ( ph -> W e. LMod ) |
| 12 | 11 | adantr | |- ( ( ph /\ X e. U ) -> W e. LMod ) |
| 13 | 6 | adantr | |- ( ( ph /\ X e. U ) -> U e. S ) |
| 14 | simpr | |- ( ( ph /\ X e. U ) -> X e. U ) |
|
| 15 | 8 | adantr | |- ( ( ph /\ X e. U ) -> Y e. ( N ` { X } ) ) |
| 16 | 3 4 12 13 14 15 | ellspsn3 | |- ( ( ph /\ X e. U ) -> Y e. U ) |
| 17 | 11 | adantr | |- ( ( ph /\ Y e. U ) -> W e. LMod ) |
| 18 | 6 | adantr | |- ( ( ph /\ Y e. U ) -> U e. S ) |
| 19 | simpr | |- ( ( ph /\ Y e. U ) -> Y e. U ) |
|
| 20 | 1 4 | lspsnid | |- ( ( W e. LMod /\ X e. V ) -> X e. ( N ` { X } ) ) |
| 21 | 11 7 20 | syl2anc | |- ( ph -> X e. ( N ` { X } ) ) |
| 22 | 1 2 4 5 7 8 9 | lspsneleq | |- ( ph -> ( N ` { Y } ) = ( N ` { X } ) ) |
| 23 | 21 22 | eleqtrrd | |- ( ph -> X e. ( N ` { Y } ) ) |
| 24 | 23 | adantr | |- ( ( ph /\ Y e. U ) -> X e. ( N ` { Y } ) ) |
| 25 | 3 4 17 18 19 24 | ellspsn3 | |- ( ( ph /\ Y e. U ) -> X e. U ) |
| 26 | 16 25 | impbida | |- ( ph -> ( X e. U <-> Y e. U ) ) |