This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in the class of all limit ordinals. (Contributed by Scott Fenton, 11-Apr-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ellimits.1 | |- A e. _V |
|
| Assertion | ellimits | |- ( A e. Limits <-> Lim A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ellimits.1 | |- A e. _V |
|
| 2 | df-limits | |- Limits = ( ( On i^i Fix Bigcup ) \ { (/) } ) |
|
| 3 | 2 | eleq2i | |- ( A e. Limits <-> A e. ( ( On i^i Fix Bigcup ) \ { (/) } ) ) |
| 4 | eldif | |- ( A e. ( ( On i^i Fix Bigcup ) \ { (/) } ) <-> ( A e. ( On i^i Fix Bigcup ) /\ -. A e. { (/) } ) ) |
|
| 5 | 3anan32 | |- ( ( Ord A /\ A =/= (/) /\ A = U. A ) <-> ( ( Ord A /\ A = U. A ) /\ A =/= (/) ) ) |
|
| 6 | df-lim | |- ( Lim A <-> ( Ord A /\ A =/= (/) /\ A = U. A ) ) |
|
| 7 | elin | |- ( A e. ( On i^i Fix Bigcup ) <-> ( A e. On /\ A e. Fix Bigcup ) ) |
|
| 8 | 1 | elon | |- ( A e. On <-> Ord A ) |
| 9 | 1 | elfix | |- ( A e. Fix Bigcup <-> A Bigcup A ) |
| 10 | 1 | brbigcup | |- ( A Bigcup A <-> U. A = A ) |
| 11 | eqcom | |- ( U. A = A <-> A = U. A ) |
|
| 12 | 9 10 11 | 3bitri | |- ( A e. Fix Bigcup <-> A = U. A ) |
| 13 | 8 12 | anbi12i | |- ( ( A e. On /\ A e. Fix Bigcup ) <-> ( Ord A /\ A = U. A ) ) |
| 14 | 7 13 | bitri | |- ( A e. ( On i^i Fix Bigcup ) <-> ( Ord A /\ A = U. A ) ) |
| 15 | 1 | elsn | |- ( A e. { (/) } <-> A = (/) ) |
| 16 | 15 | necon3bbii | |- ( -. A e. { (/) } <-> A =/= (/) ) |
| 17 | 14 16 | anbi12i | |- ( ( A e. ( On i^i Fix Bigcup ) /\ -. A e. { (/) } ) <-> ( ( Ord A /\ A = U. A ) /\ A =/= (/) ) ) |
| 18 | 5 6 17 | 3bitr4ri | |- ( ( A e. ( On i^i Fix Bigcup ) /\ -. A e. { (/) } ) <-> Lim A ) |
| 19 | 3 4 18 | 3bitri | |- ( A e. Limits <-> Lim A ) |