This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the class of all limit ordinals. (Contributed by Scott Fenton, 11-Apr-2012)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-limits | ⊢ Limits = ( ( On ∩ Fix Bigcup ) ∖ { ∅ } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | climits | ⊢ Limits | |
| 1 | con0 | ⊢ On | |
| 2 | cbigcup | ⊢ Bigcup | |
| 3 | 2 | cfix | ⊢ Fix Bigcup |
| 4 | 1 3 | cin | ⊢ ( On ∩ Fix Bigcup ) |
| 5 | c0 | ⊢ ∅ | |
| 6 | 5 | csn | ⊢ { ∅ } |
| 7 | 4 6 | cdif | ⊢ ( ( On ∩ Fix Bigcup ) ∖ { ∅ } ) |
| 8 | 0 7 | wceq | ⊢ Limits = ( ( On ∩ Fix Bigcup ) ∖ { ∅ } ) |